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Abstract - In this paper, we study the problem of estimating a distribution function on ℝd, d ≥ 1, from data contaminated by additive
noise, using the L1-distance between distribution functions. We assume that the error distribution is known and belongs to a class of
anisotropic ordinary smooth distributions. We derive minimax-optimal convergence rates for L1-deconvolution in arbitrary dimensions.
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1. Introduction
We observe random vectors in ℝd, d ≥ 1,

where each Yi consists of a signal Xi additively corrupted by a noise 휺i. We assume that

 the (column) random vectors Xi = (Xi,1, ..., Xi,j, ..., Xi,d)T are independent and identically distributed (i.i.d.) according to
an unknown probability measure μX;

 the random vectors 휺i = (εi,1, ..., εi,j, ..., εi,d)T are i.i.d. according to a known probability measure με;
 the sequences (Xi)i ∈ ℕ and (휺i)i ∈ ℕ are independent.

The distribution of the Yi’s is then the convolution μX * με,

In this paper, we derive minimax-optimal convergence rates relative to the L1-distance for estimating the distribution
function FX associated with the probability measure μX. For probability measures μ and γ on ℝd, d ≥ 1, let F and G be the
associated distribution functions, respectively. Then, the distance in the L1-metric between them is given by

The distance in the L1-metric between distribution functions on ℝd, d ≥ 1, can be viewed as a multivariate extension of
the L1-Wasserstein distance between probability measures in dimension one. Indeed, in the univariate case, the L1-
Wasserstein distance between two probability measures μ and γ, defined as W1(μ, γ): = infμ⟵π⟶γ ∫

ℝ2|x − y|dπ(x, y) , where
the infimum is taken over all joint distributions π on ℝ2 with fixed marginals μ and γ, coincides with the L1-distance between
their distribution functions, that is W1(μ, γ) = F − G 1, even though, in the multivariate case, the L1-Wasserstein distance
between two probability measures on ℝd is not equal to the L1-distance between their distribution functions. More generally,
for 1 ≤ p < ∞ , the distance in the Lp-metric F − G p = (∫

ℝd|F(x) − G(x)|p dx)1 / p provides a natural way to compare
distribution functions. This metric is homogeneous of order d / p, that is F( ∙ / r) p = rd / p F p for any scalar r > 0.
Furthermore, Lp-distances between distribution functions on ℝd, d ≥ 1, can be controlled by their L1-distance by virtue of
the inequality F − G p ≤ (2p − 1 F − G 1)1 / p = 21 − 1 / p( F − G 1)1 / p.

Yi = Xi + 휺i,         i=1, ..., n, (1)

Yi ~ μX * με,          i=1, ..., n.

F − G 1 = ∫
ℝd|F(x) − G(x)| dx.
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1.1. Assumptions on the Noise
Let φε(t), t ∈ ℝd, denote the characteristic function of the noise distribution με defined as

where, for given vectors t, x ∈ ℝd, we denote by 〈 t, x〉: = ∑d
j = 1tjxj the standard scalar product in ℝd. We assume that

 the error coordinates (ε1,j)1 ≤ j ≤ d are independent random variables. Let με,j be the distribution of the jth coordinate
of the random vector 휺1 and let φε,j be its characteristic function. Then, 

 the characteristic function of the noise has a polynomial decrease: there exists 휷 ∈ ℝd, with βj > 0 for all j = 1, ..., d,
and constants R1, R2 > 0 such that the characteristic function of the noise satisfies

 defined the function rj(t): = 1 / φε,j(t), t ∈ ℝ, there exists a constant R > 0 such that rj( ∙ ) is twice continuously
differentiable and, for l = 0, 1,

Condition (3) implies that |φε(t)| ≠ 0 for all t ∈ ℝd. Random variables with Laplace or gamma distributions (with shape
parameter β > 0 and scale parameter equal to 1) are ordinary smooth. When all error coordinates ε1,j, j = 1, ..., d, are ordinary
smooth, potentially with different orders βj > 0, this is referred to as the homogeneous case.

Many studies have addressed the problem of recovering a signal’s distribution from measurements contaminated by
additive noise with known density; see, e.g., [3], [6] and the references therein. Most existing work focuses on the one-
dimensional setting and the problem of density function recovery. Few papers address the multidimensional deconvolution
problem: [3] proposes adaptive anisotropic kernel estimators for the signal density under the MISE criterion, while [5]
investigates convergence rates for kernel-based estimators in Wasserstein distances under supersmooth errors, though
without achieving optimal rates. In this work, we study the problem of recovering the distribution function in a
multidimensional setting, employing a multivariate extension of the integrated classical deconvolution kernel density
estimator and we establish minimax-optimal L1-risk bounds for this estimator, without imposing any regularity assumptions
on the mixing distribution beyond the existence of a Lebesgue density.

1.2. Notations
For two functions u and v on ℝd, d ≥ 1, we write u(x) ≲ v(x) if there exists a constant C > 0 (not depending on x) such

that u(x) ≤ Cv(x) for all x ∈ ℝd. The same convention applies to u(x) ≳ v(x). For a function g ∈ L1(ℝ) ∩ L2(ℝ), let
ℱ[g(x)](t): = ∫ℝeitxg(x) dx, t ∈ ℝ, be its Fourier transform. Let h(t) = ℱ[g(x)](t), t ∈ ℝ. Then, the inverse Fourier
transform of h is g(x) = ℱ − 1[h(t)](x): = ∫ℝe − itxh(t) dt, x ∈ ℝ.

1.3. Organization of the Paper
The paper is organized as follows. In Section 2, we derive an upper bound on the convergence rate with respect to the

L1-metric of the integrated classical deconvolution kernel density estimator. In Section 3, we establish a matching lower
bound for the same estimation problem. Finally, in Section 4, we discuss possible extensions of the results.

φε(t) = ∫
ℝdei〈 t, x〉με(dx),         t ∈ ℝd,

휺1 ~ με,1⨂ ... ⨂με,d; (2)

1
R1

∏
j = 1

d

(1 + |tj|)
− βj ≤ |φε(t)| = ∏

j = 1

d

φε,j(tj) ≤ R2∏
j = 1

d

(1 + |tj|)
− βj,         t ∈ ℝd; (3)

|r(l)
j (t)| ≤ R(1 + |tj|)

(βj − l),         t ∈ ℝ. (4)
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2. Upper Bound
In this section, we first define the distribution function estimator in the multivariate case. We then derive an upper bound

for its convergence rate under the L1-risk, thereby extending Theorem 3.1 in [4], p. 243, to the multivariate case. Specifically,
we generalize the upper bound for L1-Wasserstein deconvolution in the univariate case to L1-deconvolution in the
multivariate setting. Since the distribution function estimator is obtained by integrating a kernel density estimator, we begin
by specifying the required assumptions on the kernel.

2.1. Assumptions on the Kernel
For simplicity and without loss of generality, we assume that

 K(x) = ∏d
j = 1Kj(xj), x ∈ ℝd, where, for every j = 1, ..., d, the kernel function Kj ∈ L1(ℝ) ∩ L2(ℝ). We denote by φK,j(t),

t ∈ ℝ, the Fourier transform of Kj. In symbols, φK,j(t): = ℱ[Kj(x)](t), t ∈ ℝ;
 for every j = 1, ..., d, the kernel Kj is a symmetric density with ∫ℝ|z|Kj(z) dz < ∞  and its Fourier transform φK,j(t), t ∈

ℝ, is symmetric about zero (φK,j( − t) = φK,j(t), t ∈ ℝ) and has supp(φK,j) = [ − 1, 1];
 for every j = 1, ..., d, the Fourier transform φK,j(t), t ∈ ℝ, is continuously differentiable with Lipschitz derivative.

An example of univariate kernel density Kj satisfying these assumptions is provided in (7) of [4], p. 240. From the first
kernel assumption stated above, it follows that the Fourier transform of the kernel K is given by

2.2. The Distribution Function Estimator
In this section, we give the definition of the distribution function estimator as the integral of the multivariate version of

the standard deconvolution kernel density estimator on ℝ, first introduced by [2]. For hj > 0, j = 1, ..., d, let

The deconvolution kernel density estimator is then defined as

The estimator in (5) is the multivariate version of the standard deconvolution kernel density estimator and has been studied
in [1], [3] and [5]. It has Fourier transform

where φn(t) is the empirical characteristic function of Y1, ..., Yn defined as

As a distribution function estimator, we consider the integral of the kernel density estimator in (5)

φK(t): = ℱ[K(x)](t) = ∏
j = 1

d

φK,j(tj),         t ∈ ℝd.

K̃j,hj 
(xj): = ℱ − 1

φK,j(tj)

φε,j
tj/

hj

(xj) = ∫
ℝ

e − itjxj
φK,j(tj)

φε,j
tj/

hj

 dtj = hjℱ − 1
φK,j(hjtj)

φε,j(tj)
(hjxj),         xj ∈ ℝ.

f̂n(x) = f̂n(x1, ..., xd): = 1
n
∑
i = 1

n

∏
j = 1

d
1
hj

K̃j,hj 
xj − Yi,j

hj
= 1

n
∑
i = 1

n

∏
j = 1

d

ℱ − 1
φK,j(hjtj)

φε,j(tj)
(xj − Yi,j),         x ∈ ℝd. (5)

ℱ f̂n(x) (t) = φn,Y(t) × ∏
j = 1

d φK,j(hjtj)
φε,j(tj)

,        t ∈ ℝd,

φn,Y(t): = 1
n
∑
i = 1

n

ei〈 t, Yi〉 = 1
n
∑
i = 1

n

∏
j = 1

d

eitjYi,j,         t ∈ ℝd.
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The estimator in (6) is the extension to the multivariate setting of the deconvolution distribution function estimator considered
in (8) of [4], p. 240.

2.3. Rates of Convergence 
In this section, we derive an upper bound for the L1-risk E(μX * με)⨂n[ F̂n − FX 1] of the estimator F̂n involving the

regularity assumptions on the error coordinates stated in Section 1.1 and a tail condition imposed on the distribution of each
coordinate Y1,j, j = 1, ..., d, of Y1.

Theorem 1. Suppose that we observe a sample Y1, ..., Yn from the multivariate convolution model (1). Assume that conditions
(2)-(4) on the error distribution are satisfied and, for every j = 1, ..., d,

Suppose that the mixing distribution μX possesses a Lebesgue density on ℝd and that the coordinates (X1,j)1 ≤ j ≤ d of X1 are
independent. Then, for h = (h1, ..., hd)T ∈ (0, 1)d,

where 

Taking  h1,opt =  ... = hd,opt = n − 1 / ∑d
j = 1[(2βj ∨ 1) + 1], where (2βj ∨ 1): = max{2βj, 1}, we obtain

Proof. We begin by deriving a bias-variance decomposition of the L1-risk E(μX * με)⨂n[ F̂n − FX 1]. For this purpose, we

define

F̂n(x):

= ∫ − ∞

x1

...∫ − ∞

xd
f̂n(u)du

= ∫ − ∞

x1

...∫ − ∞

xd
f̂n(u1, ..., ud) du1 ... dud

= ∫ − ∞

x1

...∫ − ∞

xd 1
n
∑
i = 1

n

∏
j = 1

d
1
hj

K̃j,hj 
uj − Yi,j

hj
 du1 ... dud      

= ∫ − ∞

x1

...∫ − ∞

xd 1
n
∑
i = 1

n

∏
j = 1

d

ℱ − 1
φK,j(hjtj)

φε,j(tj)
(uj − Yi,j) du1 ... dud

= ∫ − ∞

x1

...∫ − ∞

xd
ℱ − 1 φn,Y(t) × ∏

j = 1

d φK,j(hjtj)
φε,j(tj)

(u1, ..., ud) du1 ... dud,     x ∈ ℝd.
(6)

∫
0

+ ∞
P(|Y1,j| > y) dy < ∞ . (7)

E(μX * με)⨂n F̂n − FX 1 ≲ ∑
j = 1

d

hj + 1

n
∏
j = 1

d

Ij(hj),

Ij(hj): = ∫
|t| ≤ 1/hj

∑
l = 0

1 |r(l)
j (t)|2

t2 1[ − 1, 1]c(t)  dt,           j = 1, ..., d. (8)

E(μX * με)⨂n F̂n − FX 1 ≲ n − 1 / ∑d
j = 1[(2βj ∨ 1) + 1]( log n )#{βj = 1 / 2, 1 ≤ j ≤ d} / 2.

Kh(x): = 1
h1 ∙  ... ∙ hd

K
x1
h1

, ⋯ , 
xd
hd

= ∏
j = 1

d
1
hj 

Kj
xj
hj

= ∏
j = 1

d

Kj,hj
xj ,        x ∈ ℝd,
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where the factorization follows from the first kernel assumption stated in Section 2.1 and Kj,hj
∙ :=(1 / hj)Kj ∙ / hj

represents the re-scaled version of Kj. In what follows, we take the same kernel density Kj = K for all j = 1, ..., d.

Bounding the bias of F̂n
Taking into account that E(μX * με)⨂n F̂n = FX * Kh, which can be deduced from (6), using the assumption on the existence of

the density of μX, the bias E(μX * με)⨂n F̂n − FX 1 of the estimator F̂n can be bounded as follows:

where B(h): = ∫ℝ|z|K(z) dz ∑d
j = 1hj.

Bias-variance decomposition of the L1-risk of F̂n
The expression of F̂n(x) admits the following factorization:

The following bias-variance decomposition of the L1-risk of F̂n holds:

Bounding the variance of F̂n
Let ϕ denote a function symmetric about zero, equal to 1 on [ − 1, 1] and to 0 on [ − 2, 2]c, twice continuously differentiable.
For every j = 1, ..., d, we write

By the independence of the coordinates (Y1,j)1 ≤ j ≤ d of Y1, using the inequality a + b ≤ a + b valid for every pair of real
numbers a, b > 0, we obtain

E(μX * με)⨂n F̂n − FX 1 = FX * Kh − FX 1 ≤ B(h),

F̂n(x): = ∫ − ∞

x1

...∫ − ∞

xd 1
n
∑
i = 1

n

∏
j = 1

d
1
hj

K̃j,hj 
uj − Yi,j

hj
 du1 ... dud

= 1
n
∑
i = 1

n

∫ − ∞

x1

...∫ − ∞

xd ∏
j = 1

d
1
hj

K̃j,hj 
uj − Yi,j

hj
 du1 ... dud

= 1
n
∑
i = 1

n

∏
j = 1

d

∫ − ∞

xj
1
hj

K̃j,hj 
uj − Yi,j

hj
 duj .

E(μX * με)⨂n F̂n − FX 1 ≤ E(μX * με)⨂n F̂n − FX * Kh 1 + FX * Kh − FX 1

≤ E(μX * με)⨂n F̂n − E(μX * με)⨂n F̂n 1 + B(h)

≤ ∫
ℝd

Var F̂n(x) dx + B(h).

∫ − ∞

xj

K̃j,hj 
uj  duj = ∫ − ∞

xj

ℱ − 1
φK,j(tj)ϕ(tj / hj)

φε,j(tj / hj)
(uj) duj

+ ∫ − ∞

xj

ℱ − 1
φK,j(tj)[1 − ϕ(tj / hj)]

φε,j(tj / hj)
(uj) duj

= :Ghj,1
(xj) + Ghj,2

(xj),         xj ∈ ℝ.

∫
ℝd

Var F̂n(x)  dx
≤ 1

n
∫

ℝd
E(μX * με) ∏

j = 1

d

∫ − ∞

xj
1
hj

K̃j,hj 
uj − Y1,j

hj
 duj

2  dx
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The integrals T1,j and T2,j in (9) can be bounded as the terms I and J, respectively, in [4], pp. 248-253. For every j = 1, ..., d,
we have T1,j = O(1), while, recalling the definition in (8),

so that

The assertion follows by combining the bounds on the bias and the variance and takingh1,opt =  ... = hd,opt =
n − 1 / ∑d

j = 1[(2βj ∨ 1) + 1]. Note that, in the bias-variance decomposition, the bias is the dominant term.                                   


Remark 1. For d = 1, Theorem 1 recovers, as a special case, the convergence rate of the deconvolution distribution function
estimator F̂n studied in [4], Theorem 3.1, p. 243.

Remark 2. The assumption in (7) has been discussed in Remark 3.4 of [4], pp. 244-245. It is shown to be equivalent to the
two conditions ∫ + ∞

0 P(|X1,j| > x) dx < ∞  and ∫ + ∞
0 P(|ε1,j| > u) du < ∞  jointly considered. Each of these conditions

implies that the corresponding distribution has a finite first absolute moment; hence, the corresponding characteristic function
is continuously differentiable.

3. Lower Bound
In this section, we derive a lower bound on the L1-risk over classes of uniformly bounded densities.

Theorem 2. Suppose that we observe a sample Y1, ..., Yn from the multivariate convolution model (1). Assume that conditions
(2)-(4) on the error distribution are satisfied for βj ≥ 1 / 2 for all j = 1, ..., d. For M > 0, let ℬ(M) be the class of probability
measures on ℝd with Lebesgue densities uniformly bounded by M. Then, there exists a constant C>0 such that, for any
distribution function estimator F̃n, we have

Proof. The proof combines key arguments of the proofs of Theorem 3 in [5], pp. 281-284, and Theorem 3 in [3], pp. 599-
603. For h = n − 1 / ∑d

j = 1(2βj + 1), let M = h − 1 , where ∙  denotes the greatest integer smaller than or equal to h − 1. Let

= 1

n
∫

ℝd
E(μX * με) ∏

j = 1

d

Ghj,1
xj − Y1,j

hj
+ Ghj,2

xj − Y1,j
hj

2  dx

≤ 2d

n
∏
j = 1

d

∫
ℝ

E(μX,j * με,1) Ghj,1
xj − Y1,j

hj

2 + E(μX,j * με,1) Ghj,2
xj − Y1,j

hj

2  dxj

≤ 2d

n
∏
j = 1

d

∫
ℝ

E(μX,j * με,1) Ghj,1
xj − Y1,j

hj

2  dxj⏟= :T1,j
+ ∫

ℝ
E(μX,j * με,1) Ghj,2

xj − Y1,j
hj

2  dxj⏟= :T2,j
.

(9)

T2,j ≲ Ij(hj) ≲ hj
− [(βj ∨ 1 / 2) − 1 / 2](| log hj |)1 1 / 2 (βj) / 2,

∫
ℝd

Var F̂n(x)  dx ≲ 1

n
∏
j = 1

d

Ij(hj) ≲ 1

n
∏
j = 1

d

hj
− [(βj ∨ 1 / 2) − 1 / 2](| log hj |)1 1 / 2 (βj) / 2.

liminfn→ ∞ n1 / ∑d
j = 1(2βj + 1) sup

μX ∈ ℬ(M)
E(μX * με)⨂n F̃n − FX 1 ≥ C.
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풦: = {1, ..., M}d. For k ∈ 풦, let xk be the column vector with jth coordinate xkj: = aj + kj(bj − aj)h, where bj − aj ≥
(2π) − 1, j = 1, ..., d. We define a finite class of probability measures μ휽’s on ℝd with Lebesgue densities

where c is a positive constant, f0(x): = ∏d
j = 1c − 1

j gsj
(xj / cj) for suitably chosen large enough positive constants cj’s and

functions gsj
’s that are densities of symmetric stable laws with characteristic functions ℱ[gsj

(x)](t) = exp( − |t|sj), t ∈ ℝ,

and 0 < sj < 1. By Lemma 4 in [3], p. 590, the densities gsj
’s are bounded. The real function H is such that ∫H = 0, H(0) ≠

0, |H(x)| = O(x − δ) (as |x|→ ∞ ) with δ > 3, and ℱ[H(x)](t) = 0 when |t| ∉ [1, 2]. Let 휽 ∈ {0, 1}Md. For i = 0, 1 and k ∈
풦, let 휽i

k be the sequence such that

It is known from the proof of Theorem 3 in [3], pp. 599-603, that the hypothesis functions f휽 in (10) are uniformly bounded
densities. Also, denoted by fε the density of 휺1, then, uniformly in k ∈ 풦, we have that

For 휽 ∈ {0, 1}Md, let F휽 be the distribution function having density f휽 defined in (10). Then,

Let 휽̃ be a sequence of Bernoulli random variables θ̃k, k ∈ 풦, such that P(θ̃k = i) = 1 / 2, i = 0, 1. For k ∈ 풦, let Dk: =
× d

j = 1 xkj − (bj − aj)h, xkj . For x ∈ Dk,

where, uniformly in 휽i
k, i = 0, 1, and k ∈ 풦, the integral is bounded below using the result in (11) and

where H( − 1) x : = ∫x
− ∞ H(u) du, x ∈ ℝ, is the primitive of H. It follows that

Choosing (bj − aj) such that ∫
(bj − aj) / 2
0 H( − 1) − z  dz ≥ 1 / h for every j = 2, ..., d, we obtain that

f휽(x): = f0(x) + c∑k ∈ 풦θk∏d
j = 1H

xj − xkj
2h ,         x ∈ ℝd, (10)

휽i
k l = i l = k,

θl l ≠ k,          l ∈ 풦.

χ2(f
휽1

k
* fε; f

휽0
k

* fε): = ∫
(f

휽1
k

* fε − f
휽0

k
* fε)2

f
휽0

k
* fε

= O(n − 1). (11)

sup
μX ∈ ℬ(M)

E(μX * με)⨂n F̃n − FX 1 ≥ max
휽 ∈ {0, 1}Md E(μ휽 * με)⨂n F̃n − F휽 1 .

max
휽 ∈ {0, 1}Md E(μ휽 * με)⨂n F̃n(x) − FX(x) ≥ E

휽̃
E(μ

휽̃
* με)⨂n F̃n(x) − FX(x)

≥ 1
2

E
휽̃

F
휽̃1

k
(x) − F

휽̃0
k
(x) × ∫

(ℝd)n
min (f

휽̃1
k

* με)⨂n, (f
휽̃0

k
* με)⨂n  dy1 ... dyn ,

F
휽̃1

k
(x) − F

휽̃0
k
(x) = (2h)dc∏

j = 1

d

H( − 1)
xj − xkj

2h
,

sup
μX ∈ ℬ(M)

E(μX * με)⨂n F̃n − FX 1 ≳ hd∫
× d

j = 1 aj, bj
∏
j = 1

d

H( − 1)
xj − xkj

2h
 dx .

hd∫
× d

j = 1 aj, bj
∏
j = 1

d

H( − 1)
xj − xkj

2h
 dx = hd ∑

k ∈ 퓚
∫

Dk
∏
j = 1

d

H( − 1)
xj − xkj

2h
 dx

≥ hd ∑
k ∈ 퓚

∫
Dk

∏
j = 1

d

H( − 1)
xj − xkj

2h
 dx
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and the proof is complete.                                                                                                                                                        

Remark 3. Even if the lower bound rate matches the upper bound of the distribution function deconvolution estimator F̂n
introduced in Section 2.2, it should be noted that the class of probability measures with independent coordinates is a subset
of probability measures with uniformly bounded densities. Therefore, the lower bound could potentially be different.

4. Conclusion
In this paper, we study the problem of estimating a distribution function on ℝd, for any dimension d ≥ 1, from data

contaminated by additive noise with known density. We employ the L1-distance between distribution functions as a
discrepancy measure, which can be viewed as a multivariate extension of the L1-Wasserstein distance between one-
dimensional probability measures. First, we derive an upper bound on the convergence rate for the integrated classical
deconvolution kernel density estimator, without imposing any regularity conditions on the mixing distribution beyond the
existence of a Lebesgue density. We then prove a matching lower bound for the same estimation problem. Some important
extensions remain to be fully investigated. These include (i) deriving adaptive minimax-optimal convergence rates for
anisotropic mixing distribution functions on Hölder or Sobolev scales, (ii) developing new estimation methods for the case
where the error distribution is unknown and must be estimated from data.
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