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Abstract We investigate the novel application of a state-of-the-art physics-informed Gaussian Process method to a 
computational haemodynamics model described by nonlinear partial differential equations (PDEs), commonly used to describe blood 
flow in a network of blood vessels. We estimate and quantify the uncertainty of the PDE solution and the unknown PDE parameters in a 
Bayesian framework without resorting to computationally expensive evaluations of the PDEs. Our results indicate that with low noise, 
both the PDE parameter and solutions are well inferred.
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1. Introduction
Computer simulations based on partial differential equations (PDEs) are powerful tools that enable understanding of many

physical and engineering phenomena. Critical to these PDEs is the estimation of unknown parameters from measurements.
Typically, methods for PDE parameter inference require repeated numerical evaluations of the PDEs a large number of times,
which is computationally expensive, and thus often deemed impractical in real-world applications. To overcome this issue,
a physics-informed machine learning approach can be taken, in which the PDE numerical evaluation is bypassed altogether.
In the current study, we employ the PDE-informed Gaussian Process (PIGP) approach developed by Li et al. [1] to a
fluid-dynamics application of the cardiovascular circulation that is based on the Navier-Stokes equations [2].

The idea behind PIGP is that the PDE solution is modelled as a Gaussian Process (GP). The PIGP method can handle
nonlinear PDEs by the use of a PDE augmentation, whereby the nonlinear PDEs are reformulated as a system of equivalent
linear PDEs in all derivatives. Besides estimating the unknown PDE parameters and solutions, the PIGP method provides un-
certainty quantification (UQ) by constructing the joint posterior distribution of the PDE parameters, solution and measurement
noise variance.

Here we are interested in the novel application of PIGP to an idealised model of the pulmonary blood circulation described
by nonlinear PDEs. The model is able to predict features of the pulmonary haemodynamics, such as pulmonary blood flow,
pressure or cross-sectional area under normal physiological and pathological conditions. This is of medical relevance as it
allows pulmonary disease monitoring and treatment [3, 4].

We find that with low noise, both the PDE parameter and solutions are well estimated, and the uncertainty is quantified.

2. PIGP methodology
Literature studies have mainly employed GP models for PDE parameter inference in the context of emulation [5, 6]. More 

specifically, a GP emulator is employed to approximate the PDE solution based on a training data set obtained by numerically 
evaluating the PDEs a large number of times on a design. The disadvantage of this approach is that to build the training data set, 
the PDEs are numerically evaluated a large number of times, which is computationally burdensome for time-consuming PDEs. 
A second approach exists, where GPs are used as a prior on the PDE solution while the physics are naturally incorporated 
without relying on repeated expensive forward evaluations [1, 7]. The latter approach is adopted by the PIGP method. Most 
studies investigating the latter approach only consider linear PDEs [8, 7], and make use of the fact that the GP is closed under 
differentiation (a linear transformation of a GP is also a GP). However, for nonlinear PDEs, this property does not hold, and 
hence, a linearisation step is required. For instance, the study in [7] linearises the nonlinear PDE operator by a discretisation
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of the PDE in the time domain before applying GP regression.
Below we proceed to describe the PIGP methodology [1] employed in this work.
Consider a PDE operator A(x, 𝑢(x),𝜽) parameterized by the unknown PDE parameter 𝜽 , and PDE solution 𝑢(x) for x ∈Ω.

We further consider a function 𝑓 (x, 𝑢(x),𝜽), which is the zeroth-order term of the PDE, such that

A(x, 𝑢(x),𝜽) = 𝑓 (x, 𝑢(x),𝜽). (1)

We assume that the PDE solution is observed with noise, hence 𝑦𝑖 = 𝑢(x𝑖) + 𝜖𝑖 , where the errors 𝜖𝑖 , 𝑖 = 1, . . . 𝑛 are assumed
Normally distributed, independent and identically distributed (iid), 𝜖𝑖

iid∼ N(0,𝜎2). Furthermore, we let 𝝉 = {x1, . . . ,x𝑛} denote
the set of observation locations and/or times. PIGP aims to estimate and quantify the uncertainty of the PDE parameter 𝜽 , the
PDE solution 𝑢(x) and the noise variance 𝜎2 from data y(𝝉) in a Bayesian framework.

As part of PIGP, the PDE solution 𝑢(x) is placed a GP prior on, hence the random variable 𝑈 (x) ∼ GP(𝜇(x), 𝑘 (x,x′)),
where 𝜇(x) and 𝑘 (x,x′) are the mean and covariance function of the GP.

Linear PDE operator: For a linear PDE operator denoted L𝜽
x , L𝜽

x𝑈 (x) exists for a smooth enough mean and covariance
function, and L𝜽

x𝑈 (x) is also a GP. Further, a new variable 𝑊 is introduced,

𝑊 = supx∈Ω | |L𝜽
x𝑈 (x) − 𝑓 (x,𝑈 (x),𝜽) | |∞, (2)

which quantifies the difference between the prediction of the PDE solution and the PDE term. Hence, for a perfect prediction,
𝑊 ≡ 0. However, in practice 𝑊 cannot be computed exactly, and hence it is approximated by a finite discretisation set, i.e.
I = {x1, . . . ,x𝑛𝐼 } chosen such that 𝝉 ⊂ I ⊂ Ω, i.e. the discretisation set includes the set of observations. Hence, we define

𝑊𝐼 = maxx∈I | |L𝜽
x𝑈 (x) − 𝑓 (x,𝑈 (x),𝜽) | |∞, (3)

and for a sufficiently dense I, 𝑊𝐼 →𝑊 . By denoting u(I) = (𝑢(x1), . . . , 𝑢(𝑥𝑛𝐼 )), we construct the joint posterior distribution

𝑝(u(I),𝜽 ,𝜎2 |𝑊𝐼 = 0,y(𝝉))
∝ 𝑝(u(I) |𝜽) × 𝑝(𝜽) × 𝑝(𝜎2) × 𝑝(y(𝝉) |u(I),𝜽 ,𝜎2) × 𝑝(𝑊𝐼 = 0|u(I),𝜽 ,𝜎2)
∝ 𝑝(𝜽) × 𝑝(𝜎2) × exp{−0.5[𝑛𝐼 log(2𝜋) + log(det(C) + | |u(I) − 𝝁(I) | |C−1]}
× exp{−0.5[𝑛 log(2𝜋) +𝑛 log(𝜎2) + | |u(𝝉) −y(𝝉) | |𝜎−2]}
× exp{−0.5[𝑛𝐼 log(2𝜋) + log(det(K)) + | | 𝑓 (I,u(I),𝜽) −L𝜽

x𝝁(I) −m{u(I) − 𝝁(I)}| |K−1]}, (4)

where C =K(I, I), m =LK(I, I)K(I, I)−1, K =LKL(I, I)K(I, I)−1KL(I, I), and K(I, I) is an (𝑛𝐼 , 𝑛𝐼 ) covariance matrix with
(i,j) element 𝑘 (x𝑖 ,x 𝑗), LK(I, I) is a matrix with elements of the form L𝜽

x (𝑘 (x,x′)), KL(I, I) is a matrix with elements of the
form L𝜽

x′ (𝑘 (x,x′)), and LKL(I, I) is a matrix of the form L𝜽
x (L𝜽

x′ (𝑘 (x,x′)). The reader is referred to [1] for details.

Nonlinear PDE operator: For a nonlinear PDE operator, A(x, 𝑢(x),𝜽) in eq (1) may not be Gaussian, and hence we
cannot directly write down the joint posterior distribution in eq (4). To overcome this issue, the nonlinear PDE can be turned
into a system of augmented linear PDEs, which are equivalent to the original nonlinear PDE. Thus, we write the nonlinear
PDE in eq (1) as [1]:

∇𝜶1𝑢 =A1(𝜽 , 𝑢,∇𝜶2𝑢, . . . ,∇𝜶𝑙𝑢) + 𝑓 (x, 𝑢(x),𝜽)), (5)

where ∇𝜶𝑖 is a partial derivative operator, A1 is nonlinear in its arguments and may contain parameter-dependent terms. The 
constructed augmented PDE has two key advantages which enable the PIGP methodology described above to be applied: (i) 
it is linear in all non-zeroth order derivatives, and (ii) the corresponding PDE operator is independent of the parameter 𝜽 . The 
latter is important for computational reasons, since the dependence of the PDE operator on 𝜽 would imply the updating of K, 
LK, KL, and LKL (eq (4)) for every 𝜽 update within a Bayesian inference scheme, which would increase computational 
costs significantly.
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By denoting 𝑢1 = 𝑢, eq (5) is rewritten such that: ∇𝜶2𝑢1(x) = 𝑢2(x), . . . , ∇𝜶𝑙𝑢1(x) = 𝑢𝑙 (x), and∇𝜶1𝑢1(x) = 𝑓 (x, 𝑢1(x),𝜽) +
A1(x,𝜽 , 𝑢1(x), 𝑢2(x), . . . , 𝑢𝑙 (x)). Further, by placing independent GPs on 𝑈1, . . . ,𝑈𝑙, the joint posterior distribution of
𝑢1, . . . 𝑢𝑙,𝜽 ,𝜎

2 can be derived, and takes a similar form to that in eq (4). The reader is referred to [1] for further details.

3. Fluid-dynamics application
We apply the PIGP methodology to a computational haemodynamics model commonly used to describe blood flow in a

network of blood vessels [2]. The computational framework is a reduced form of the full Navier-Stokes equation in cylindrical
coordinates, only accounting for axial dynamics down a blood vessel and hence it is one-dimensional (1D) in space. While
the model is considered low-fidelity in its description of spatial fluid flow, it is computationally efficient and enables the use
of more physiological stress-strain dynamics, where vessel walls can deform under load [2].

3.1. Nonlinear PDEs
The fluid-dynamics model is determined by a set of coupled nonlinear PDEs. The equations simulate blood flow, 𝑞(𝑥, 𝑡),

blood pressure, 𝑝(𝑥, 𝑡) and cross-sectional area 𝐴(𝑥, 𝑡) = 𝜋(𝑅(𝑥, 𝑡))2 at location 𝑥 and time 𝑡 by

𝜕𝐴

𝜕𝑡
+ 𝜕𝑞

𝜕𝑥
= 0,

𝜕𝑞

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑞2

𝐴

)
+ 𝐴

𝜌

𝜕𝑝

𝜕𝑥
= −2𝜋𝜈𝑅

𝛿

𝑞

𝐴
. (6)

For notational simplicity, we have dropped the indices (𝑥, 𝑡). Here 0 ≤ 𝑥 ≤ 𝐿 (cm) is the axial position along the vessel, 𝜇
(g/cm-s) is the viscosity, 𝜌 (g/cm3) is blood density, 𝜈 = 𝜇/𝜌 (cm2/s) is the kinematic viscosity, 𝑅(𝑥, 𝑡) (cm) is the radius, and
𝑡 (s) is time. The axial blood velocity, 𝑢𝑥 = 𝑞/𝐴, has a shape profile given by the Stokes boundary layer

𝑢𝑥 (𝑟, 𝑥, 𝑡) =
{

𝑢̄𝑥 , 𝑟 < 𝑅− 𝛿,

𝑢̄𝑥
(𝑅− 𝑟)

𝛿
, 𝑅− 𝛿 < 𝑟 ≤ 𝑅.

(7)

Here 𝛿 =
√︁
𝜈𝑇/2𝜋 (cm) is the boundary layer thickness, 𝑇 (s) is the duration of the cardiac cycle, and 𝑢̄𝑥 is the axial velocity

outside of the boundary layer towards the center of the vessel. Finally, we define a pressure-area relationship of the form

𝑝(𝑥, 𝑡) = 𝑝0 +
4
3
𝐸ℎ

𝑟0

(
1−

√︂
𝐴0
𝐴

)
,

𝐸ℎ

𝑟0
= 𝑘1 exp(−𝑘2𝑟0) + 𝑘3, (8)

where 𝐸 (g/cm-s2) is Young’s modulus, ℎ (cm) is the vessel wall thickness, 𝑝0 (g/cm-s2) is the reference pressure corresponding
to the reference area 𝐴0 = 𝜋𝑟2

0 (cm2). For our analysis, we consider a single blood vessel, and impose a dynamic inflow at the
start of the vessel 𝑞(0, 𝑡) and a constant pressure at the end point of the vessel 𝑝(𝐿, 𝑡) as boundary conditions. We use this as
a starting point for method development, with further applications for models that include a network of blood vessels [2, 3].

3.2. Augmented linear PDEs
Equations (6) and (8) contain three variables, area 𝐴(𝑥, 𝑡), flow 𝑞(𝑥, 𝑡) and pressure 𝑝(𝑥, 𝑡). We reduce the system by

expressing 𝑝(𝑥, 𝑡) in terms of 𝐴(𝑥, 𝑡). Further, by denoting 𝐴 = 𝐴1 and 𝑞 = 𝑞1, and after dropping the indices (𝑥, 𝑡) for
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notational simplicity, we reformulate the system of nonlinear PDEs in eqs (6) and (8) by the equivalent linear PDEs:

𝜕𝐴1
𝜕𝑥

= 𝐴2,

𝜕𝑞1
𝜕𝑥

= 𝑞2,

𝜕𝐴1
𝜕𝑡

= −𝑞2,

𝜕𝑞1
𝜕𝑡

= −2
𝑞1
𝐴1

𝑞2 +
(
𝑞1
𝐴1

)2
𝐴2 −

2
3𝜌

𝐸ℎ

𝑟0

√︂
𝐴0
𝐴1

𝐴2 −
2𝜋𝜈𝑅
𝛿

𝑞1
𝐴1

, (9)

where 𝑅 =

√︃
𝐴1
𝜋

. The PIGP method will therefore infer the PDE solutions 𝐴(𝑥, 𝑡) and 𝑞(𝑥, 𝑡); 𝑝(𝑥, 𝑡) can then be obtained
from 𝐴(𝑥, 𝑡) using the first equation in (8). We also learn the parameter 𝐸ℎ/𝑟0 by assuming 𝑘1 = 0 and 𝑘2 = 0, and only infer
𝑘3 from the second equation in (8). The inference data consist of observations for both variables 𝐴(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) at various
location points 𝑥 and time points 𝑡.

4. Simulation study
We consider 225 data points, 15 in each direction, 𝑥 and 𝑡, hence 𝝉 = {(𝑥𝑖 , 𝑡𝑖), 𝑖 = 1, . . . 𝑛}, where 𝑛 = 225. To mimic the

real data collection, we take 𝑡 to be evenly spaced between [0,𝑇], where 𝑇 is the time interval (0.9 s). In addition, we take
𝑥 evenly spaced between [0, 𝐿], where 𝐿 = 50 (mm) is the vessel length. We add noise to the data, 𝜖𝑖

iid∼ N(0,𝜎2), where
𝜎2 = 10−6. These data act as training data for GP fitting. We use a product Matèrn kernel with the degree of freedom set to
2.1, see [1] for details.

For the purpose of this simulation study, we assume no knowledge of the boundary conditions, which is a scenario often
encountered in practice, in order to test the method’s ability to infer the parameter and PDE solution without access to the
boundary conditions. In addition, we take the number of discretisation points 𝑛𝐼 to be equal to the number of observations 𝑛.

Lastly, we obtain 20,000 Hamiltonian Monte Carlo (HMC) samples from the generalisation of the posterior distribution
in eq (4) for multiple GPs, see [1] for details. As a starting point we use the maximum aposteriori point (MAP) found using
the LBFGS algorithm to speed up computations, and using the default step size of 10−5 and the number of leapfrog steps of
200 [1]. For the PDE parameters we use a uniform prior within the physiologically chosen range [7.5,8.5] ×104, and for the
noise variance we use Jeffrey’s prior [1].

5. Results
We find MAP of the unknown PDE parameter and PDE s olutions 𝐴(𝑥, 𝑡 ) and 𝑞(𝑥, 𝑡 ) by optimising their joint posterior 

distribution (while keeping the noise variance 𝜎2 fixed at its true value) in eq (4). In Figure 1(a), we show the optimisation 
trajectory of the PDE (stiffness) p arameter. We notice that the parameter converges towards the true value, and its final value 
(7999) is only decimals away from the true value (80000), which is expected given the low noise variance considered.

To quantify the uncertainty in the estimation, we run HMC, and we infer the PDE parameter, the PDE solutions and the 
noise variance jointly. In Figure 1(b), we display the marginal posterior distribution of the PDE parameter, which contains 
the true parameter value. It also becomes obvious that compared to the prior distribution (a uniform within the imposed 
parameter range), the posterior is much narrower (posterior uncertainty is reduced compared to prior uncertainty), suggesting 
informativeness of the data about the parameter.

In addition, in Figures 2 and 3 we show the PIGP predictions for the PDE solutions of 𝐴 and 𝑞 at various test locations 
x, and time 𝑡 as given by the posterior mean. We also show the 95% credible interval for the PDE solutions. Firstly, we 
notice that both 𝐴 and 𝑞 are well predicted, except A at the final 𝑥 , i .e. at the end of the v essel. We can understand why the 
area estimation is poor here by analysing Figure 4, which shows the PIGP predictions against the training data for both area 
and flow, as well as the difference between the observations and pr edictions. We see that at the end point the area is almost 
constant, which contrasts with the dynamic behaviour in the rest of the locations. The GP is less accurate at the end point 
because of the lower signal amplitude relative to the other locations, which is a consequence of the constant pressure outlet
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boundary conditions. We expect that the accuracy would increase if boundary conditions (i.e. outlet constant area and inlet
dynamic flow) were included in the PIGP. This constitutes future work.
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Fig. 1: Panel (a): Optimisation history of the PDE (stiffness) parameter: the maximum aposteriori point is seen to converge to the true
parameter value, indicated in red continuous (horizontal) line. Panel(b): Kernel density estimation showing the uncertainty in the

estimated PDE parameter. We superimpose in red vertical line the true parameter value, and also show the prior as a uniform distribution.
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Fig. 2: Out-of-sample estimation and uncertainty of PDE solution for area obtained with the PIGP method. We show the true signal in
red continuous line, the PIGP-prediction (posterior mean) in blue dashed line and the 95% credible interval as grey-shaded, obtained

with HMC sampling.
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Fig. 3: Out-of-sample estimation and uncertainty of PDE solution for flow obtained with the PIGP method. We show the true signal in
red continuous line, the PIGP-prediction (posterior mean) in blue dashed line and the 95% credible interval as grey-shaded, obtained

with HMC sampling.

6. Conclusions and future work
In this work we have investigated the novel application of a state-of-the-art physics-informed Gaussian Process method to

a computational haemodynamics model described by nonlinear PDEs, commonly used to describe blood flow in a network of
blood vessels. The method estimates the PDE solution and unknown PDE parameters without computationally burdensome
evaluations of the PDEs, while also quantifying the uncertainty of the estimation in a Bayesian framework. Our results indicate
that with low noise, both the PDE parameter and solutions are well inferred.

Future work extensions include: (1) investigations into a larger noise variance, as well as understand why the noise
variance is underestimated; (2) incorporation of partial boundary conditions into the PIGP framework, such as the inflow
𝑞(0, 𝑡), as well as more realistic distal boundary conditions, such as Windkessel or structured tree boundary conditions [3, 4];
(3) increasing the vessel network size and incorporating the bifurcation boundary conditions into the PIGP framework; (4)
incorporation of partial observations (either flow or area, but not both), consistent with actual data collection; (5) inference
of multiple parameters, such as 𝑘1 or 𝑘2, or boundary condition parameters. We will also compare these methods with
physics-informed neural networks (PINNs) in terms of (i) accuracy in solving inverse problems and (ii) their ability to capture
posterior uncertainty in both parameter and output space [7].
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