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Abstract – Spatio-temporal data is typically modelled using the shared spatial component and conditional autoregressive (CAR) models,
with spatial random variables assumed to be normally distributed. To monitor the COVID-19 pandemic in Jakarta province, Indonesia,
daily data on epidemiological indicators are collected for each community. Analysing the spatio-temporal patterns of these markers can
shed light on the spread of COVID-19 in Jakarta province, Indonesia. While univariate spatio-temporal models have been widely
researched, a joint model that considers both spatial and temporal effect is required to examine the relationship between different
outcomes. We propose using a bivariate-normal spatio-temporal distribution in conditional autoregressive models. Our work aimed to
create a bivariate spatio-temporal model to analyse the relationship among the number of positive confirmed COVID-19 cases and the
number of deaths from COVID-19 in Jakarta province since 2020 to early 2024. The data consists of 42 municipalities and 199 weeks.
However, we tried to fit the data with the normality assumption. We employed a bivariate normal conditional autoregressive model
(BNCAR) to account for spatial pattern correlation. To account for temporal correlation, we used a bivariate random walk prior and a
bivariate normal conditional autoregressive prior. The estimation follows a Bayesian framework. The Bayesian disease mapping approach
using a bivariate normal conditional autoregressive model showed some areas for the number of confirmed COVID-19 cases and the
number of deaths from COVID-19 in the Jakarta province area.
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1. Introduction
Spatio-temporal data, which have variations in both spatial and temporal dimensions, have gained prominence in many

disciplines, including epidemiology, environmental science, urban planning, and geosciences. Spatio-temporal data present
special challenges compared to data that are purely spatial or temporal in nature because of their intrinsic complexity,
autocorrelation, and the requirement to model jointly evolving changes in space and time [1]. The combination of space and
time frameworks enables a more precise explanation of real-world phenomena, for example, the diffusion of diseases,
climatic variations, and traffic patterns, through the incorporation of local interdependencies and development in time.

The recent development in statistical modelling and computational techniques, specifically within the framework of the
Bayesian hierarchical model, has significantly improved the ability to model and understand spatio-temporal data [2]. Such
models offer flexible frameworks to incorporate several sources of uncertainty and established information, enabling strong
inference and forecasting functions. Furthermore, recent advances in spatio-temporal modelling—exampled by dynamic
Gaussian processes, conditional autoregressive (CAR) models, and Markov switching processes—have greatly enhanced the
analytical tools at the disposal of researchers dealing with nonstationary and regime-changing phenomena [3], [4]. In spite
of such advances, spatio-temporal data modelling is still a methodologically and computationally demanding task,
particularly against the backdrop of complications such as non-Gaussian, high dimensionality, and missing or irregular
observations. As a result, current research work is persistently seeking computationally efficient estimation methods as well
as better model specifications that can uncover the complex relationships inherent in spatiotemporal data sets [5]. 

The COVID-19 pandemic has triggered an unprecedented demand for accurate and timely models to understand,
monitor, and predict the spread of infectious diseases across space and time. Given the virus's highly dynamic and
geographically heterogeneous nature, classical epidemiological models that consider either spatial or temporal aspects in
isolation are often inadequate. Instead, spatio-temporal models have become essential in capturing the dual influence of
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location and time on disease transmission, enabling a deeper understanding of how COVID-19 evolves within and across
communities[6]; [7].

Spatio-temporal epidemiological modelling allows for fine-grained analysis of disease patterns, supports real-time
surveillance, and informs targeted intervention strategies. Within this modelling framework, Bayesian hierarchical models
have gained prominence due to their flexibility in incorporating structured spatial and temporal random effects, prior
information, and various sources of uncertainty [2], [8]. Among the spatial modelling techniques, the Conditional
Autoregressive (CAR) model has proven particularly effective for areal data, where regions are represented as discrete spatial
units [9]; [10].

The CAR model introduces spatial dependence by assuming that the value of a parameter in a given area is
conditionally dependent on the values in its neighbouring areas. This formulation is especially powerful in public health
applications where administrative boundaries (e.g., districts, provinces) are the natural units of analysis and where spatial
autocorrelation is expected due to population mobility, shared healthcare infrastructure, or socio-economic similarities [8].
In the context of COVID-19, CAR models help smooth the estimated risk across neighbouring regions, reducing noise from
data sparsity or reporting variability and improving predictive performance.

Furthermore, when extended into a spatio-temporal setting, CAR models can be combined with autoregressive time
components to model temporal persistence while leveraging spatial correlations [11]. Such spatio-temporal CAR models
have been used to identify persistent high-risk clusters, detect outbreak hotspots, and evaluate the impact of intervention
policies over time [12];[13]. They are also highly adaptable, allowing for integration with non-Gaussian likelihoods and
covariate effects, which are common in infectious disease modelling.

This paper proposes a Bayesian spatio-temporal framework using a bivariate Normal CAR prior to model the spread of
COVID-19 across Jakarta province, coupled with temporal dynamics to capture trends and fluctuations over the course of
the pandemic. This manuscript aims to investigate and promote the creation of statistical models specific to spatiotemporal
data with an emphasis on bivariate normal conditional autoregressive (BNCAR) model with Bayesian framework improving
inference and prediction of regional COVID-19 risks, particularly under data uncertainty and spatial heterogeneity.

2. Data
We obtained data from March 2020 to January 2024, include the highest wave of COVID-19 infections and death in

Jakarta province. This period also included two variants of viruses such as delta and omicron. The area divided into 42
municipalities (Fig.1) with range of cases from 0 to 30,800 cases per days. Daily confirmed and death case data were removed
by municipality and aggregated by seven days (weekly) to prevent null number in observation and adjust for weekday and
weekend impacts [14].

Fig. 1 Map of the 42 municipalities in Jakarta Province
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3. Methodology
Let 푦푖푗푘 is the number of confirmed cases COVID-19  (푘= 1) and number of death COVID-19 (푘= 2) in municipality

푖 (푖 = 1,…,u = 42) at week 푗 (푗 = 1,…,v = 199). To correct for weekday/weekend affects and excessive zero numbers in daily
data, we modelled weekly data instead [14]. We assume that death COVID-19 cases and deaths have a Poisson distribution
with a mean of 휇푖푗푘 [8]

yijk~ Poisson (μijk)  (1)

3.1 Bivariate spatio-temporal models
In order to examine the relationship between spatial and temporal patterns, we need a joint model for bivariate data.

Likewise univariate models, we assumed a Poisson distribution for each variable. The log relative risk is constructed based
on spatial and temporal random effects. 

yij1|μij1~Poisson (μij1)        (2)
yij2|μij2~Poisson (μij2)        (3)

The random effects are specified as follows. The uik and vik are the correlated and uncorrelated spatial effects,
respectively, while gjk is the temporal effects, and ψik is the space-time interaction. Differ from univariate
models, this study assumes a bivariate distribution for ui1 and ui2 and for gj1and gj2 to capture the correlation between
spatially random effects and temporal ceffects.

vik~Normal (0, 흉vk
− 1)                   (4)

ψijk~Normal (0, 흍k
− 1)        (5)

gjk~BCAR(1, Λg)        (6)
uik~BCAR(1, Λu)        (7)

The bivariate model was fitted using the Bayesian estimation, with MCMC methods employed to estimate posterior
distributions. MCMC procedure was carried out utilising the NIMBLE software. We performed four scenarios of simulation
with different number of samples was generated. The first simulation, we used 10,000 iterations with first 100 iterations was
removed as burn-in. The second scenario, we used 100,000 iterations with first 1000 iterations of each chain was removed
as burn-in. The third scenario, we used 1,100,000 iterations with first 100,000 iterations of each chain was removed as burn-
in. For the last scenario, we used 3,300,000 iterations each. The first 300,000 iterations of each chain were removed as burn-
in, and a thinning factor of 1000 was applied. For all standard deviations (휎푢푘, 휎푣푘, 휎푔푘, 휎휓푘), defined in terms of the precision
as 휎 = 휏−1⁄2, a uniform distribution was over the range (0,10)[8], [15]. [11] provides code for NIMBLE that fits the MVCAR
concept. Inverse-Wishart priors were implemented to 훬푔 and 훬푢 with 2 × 2 identity matrix as the scale matrix.

4. Result
4.1 Exploratory Data Analysis

We used graphical displays to explore the data prior to fitting models. To analyse the temporal trajectory of the two
number of cases, we plotted them separately in Fig. 2 and Fig. 3 for each municipality throughout 199 weeks in our study.
For this analysis, we got the insight that COVID-19 in Jakarta has two waves that impact increasing the number of confirmed
cases, there happened in week 65 (30,800 cases) and 99 (23,480 cases). Cengkareng had the highest number of death (564),
followed by Duren Sawit (521) and Grogol Petamburan (475). Fig.3 is a map of number of death across all weeks for each
municipality in Jakarta which have been analysed by the author.
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Fig. 2 Temporal Trend of Confirmed Cases for Each Municipalities in Jakarta

Fig. 3 Number of Death across all weeks for each municipality

4.2 Posterior Diagnostic Interpretation in a Spatio-Temporal COVID-19 Model
The findings in the MCMC diagnostic plots offer vital information regarding convergence, stability, and posterior parameter

distributions from the Bayesian spatio-temporal method. Such diagnostics are essential in order to facilitate credible inference,
particularly in spatial epidemiology, where uncertainty and heterogeneity in modelling must be accounted for in order to conduct effective
disease surveillance and policymaking. 

4.3 Convergence and Stability of MCMC Chains 
Trace plots for all parameters show good convergence and mixing behaviour. Parameters fluctuate without discernible trends or

drifts from one iteration to the next, which is a sign that the Markov chains have converged to their stationary distributions. This ensures
that posterior samples are representative and summary statistics such as posterior means, medians, and credible intervals can be
interpreted with confidence. Specifically, the lack of multimodality or poor mixing in trace plots suggests that the chains are not stuck in
local modes, a desirable property when investigating complex dependencies in COVID-19 data over space and time.
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Fig.4 Correlation Terms using Trace Plot

Fig.4 explains these parameters, corr.g and cor12 likely capture spatial and temporal correlations among neighbouring regions or
time points. Their posterior densities, centred around moderate positive values (e.g., 0.3 to 1.0), suggest strong dependency structures—
consistent with how COVID-19 tends to cluster and propagate locally before spreading outward. Positive correlations imply that infection
risks are not isolated events but are spatially or temporally linked, which justifies the use of a structured model such as the conditional
autoregressive (CAR) prior.

Fig. 5 Intercept Terms of Baseline Log-Risk Level

Fig.5 explains these negative-valued parameters likely represent baseline log-risk levels under different components (direct vs.
indirect or structured vs. unstructured effects). Their stable posterior densities suggest a consistently low baseline infection rate, which
can be interpreted as the background risk in the absence of strong spatial or temporal modifiers. In a COVID-19 context, this could reflect
regions with lower mobility or more effective baseline interventions.

Fig. 6 Trace Plot of Structured Spatial Variability
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Fig. 6 explains the standard deviations of the spatial random effects reveal the degree of spatial heterogeneity across the study area.
For instance, sdu_d having a higher posterior spread indicates stronger spatial variation, possibly corresponding to clusters of high
transmission such as urban centres, transportation hubs, or socioeconomically vulnerable areas. These parameters reinforce the
importance of accounting for =

Fig. 7 Trace Plot of standard deviations account for residual spatial variability

Fig. 7 explains that these standard deviations account for residual spatial variability not captured by the structured CAR component.
High values indicate non-systematic local deviations, potentially due to reporting inconsistencies, superspreader events, or other
idiosyncratic factors. These components ensure that the model is flexible enough to capture both structured and random variation, which
is essential in a pandemic where not all spread mechanisms are spatially or temporally predictable.

The combination of well-behaved posterior distributions and clearly interpretable parameters supports the robustness of the fitted
spatio-temporal model. The application of CAR priors provides substantial benefits by smoothing risk estimates across neighbouring
regions, thus improving the stability of estimates in areas with sparse or noisy data—common in early or underreported phases of the
pandemic. From a policy standpoint, the spatial standard deviations help identify regions with elevated variability, potentially flagging
them for targeted surveillance or intervention. Meanwhile, temporal parameters aid in projecting future trends or evaluating the lagged
impact of public health measures such as lockdowns, school closures, or vaccination campaigns.

Overall, the diagnostics confirm that the Bayesian spatio-temporal model performs reliably and provides meaningful insights into
the spatial and temporal patterns of COVID-19 transmission. The model’s structure, incorporating both CAR priors and random effects,
is well-suited to capture the complexity of pandemic spread. These results can be used to inform dynamic risk maps, resource allocation,
and outbreak response strategies tailored to both spatial structure and temporal dynamics.

4.4 Result of Bivariate Models
Table 1 summarises the results from bivariate models. This table includes WAIC, pWAIC, temporal, and spatial

correlations. The association between temporal random effects 푔푗1 and 푔푗2 was not significant for any of iteration’s number,
suggesting that events in time may affect both outcomes differently. The spatially organised random effects (푢푖1 and 푢푖2)
showed a positive and substantial connection. Fig. 8 displays the estimated temporal trend of confirmed cases and death cases
for bivariate model with the fourth scenario, which had the highest temporal correlation. We also displayed scenario 4 results
as they had smallest WAIC and pWAIC. Fig. 9 shows the number of death cases, the geographical the trend indicates elevated
spatial threats in the middle of Jakarta. The greatest spatial risks associated with death cases are observed in Cipayung

Table 1. Summary of the Result Bivariate Normal Model
Scenario WAIC pWAIC Temporal Correlation Spatial Correlation
1 185,015.2 8,477.22 0.3713 [-0.2997;0.5613] 0.3561 [0.1601;0.6211]
2 171,825.7 11,010.69 -0.0866 [-0.5545;0.3837] 0.3266 [0.1205;0.6424]
3 171,246.9 9,984.2 0.2072 [-0.1359;0.6012] 0.3650 [0.0685;0.6522]
4 171,212.7 9,909.89 0.1769 [-0.3535;0.5488] 0.3829 [0.0677;0.6304]
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(a) Temporal Trend of Confirmed Cases (b) Temporal Trend of Death Cases

Fig. 8 Posterior Means of Temporal Risk

(a) Spatial Risk of Confirmed Cases (b) Spatial Risk of Death Cases

Fig. 9 Map of Spatial Risk COVID 19 in Jakarta 

5. Conclusion
In the current study, confirmed case numbers and fatalities due to COVID-19 were studied for 42 Jakarta area using

Spatio-temporal models were contemplated. In terms of the death statistics, the geographical of the pattern revealed high
spatial risks in the northern, centre, and south parts of Jakarta. As for the number of death cases, the geographical the trend
also indicates elevated spatial threats in the middle of Jakarta. The greatest spatial risks associated with death cases are
observed in Cipayung. The temporal trend since the death cases have two peaks: one in week 65 and week 99. The climax of
the worldwide temporal trend for the highest number of deaths is in week 65.

This paper aims to propose a framework for modelling joint spatio-temporal outcomes and analysing the relationship
between confirmed and deaths cases. This manuscript study to examine the spatial and temporal relationship between these
two variables. To do this, we used bivariate Normal models and the first use of an MCAR prior for temporal random effects.
The studies show a substantial association between the number of confirmed and deaths cases, with higher risks in the centre
of Jakarta and lower risks in the west. This suggests that shared spatial risk factors, such as demographic or socioeconomic
activities, may impact both the number of confirmed and deaths cases.

Further research could explore potential extensions to the given models. Consider a multivariate proper CAR model
instead of extending the ICAR prior for spatial random effects. A random walk prior of order 2 can be used instead of 1 for
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temporal random effects. A multivariate Gaussian prior for random effects can be used to account for correlation among
spatially unstructured effects. For space-time interactions, our models always used Gaussian priors that were independent.
[11] presented a variety of interactions that could be investigated.

Data availability
All data used in this study is openly available in https://corona.jakarta.go.id.
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