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Abstract - A binomial time series describes binary behaviors of individuals within a group, which depend on group
behaviors in the past. Binomial time series data is widely applied in fields such as infection tracking and behavior analysis.
In this paper, we introduce a generalized Binomial AR(p) model with exogenous variables based on Generalized Linear
Model (GLM), prove the statistical properties of the model when p = 1, and provide a parameter estimation method. Then,
we propose a sequential change-point detection method for the generalized Binomial AR(1) model, facilitate real-time data
monitoring and triggering alarms when a change point is detected. We apply the generalized Binomial AR(1) model to
weekly pneumonia & influenza mortality data and successfully identify change points related to the COVID-19 outbreak
using the proposed method.
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1. Introduction
In time series analysis, the accuracy of forecasts relies on the validity of the fitted model as new data is observed.

Therefore, it is crucial to verify if the model is still appropriate for new data points. We call t a change point if any
attributes of the model change at time t. Sequential change-point detection is used when monitoring a time series in real-
time to identify potential change points as they happen. It is important in practice, such as in data monitoring and risk
control, as the earlier a change point is detected, the faster we can take action to manage the associated risks and adjust the
model accordingly. The paper written by Chu et al., [1], is the origin of sequential change detection. Since then, sequential
detection for various data structures follows, as seen in subsequent studies such as [2], [3], [4], and [5].

Binomial time series models individual behavior within a group, reflected through binary actions (e.g., support/not
support, increase/not increase) that depend on past observations. This type of time series has broad applications in fields
such as customer engagement analysis, epidemiology, and clinical trials, but it is underdeveloped. A notable early
contribution is the binomial thinning process, introduced in [6], which defines a Binomial AR(1) model. [7] extends the
Binomial AR(1) model to Binomial AR(p). [8] makes a bivariate extension of the Binomial AR(1) model. However,
binomial time series models based on generalized linear model (GLM) and change-point detection for the models haven't
been developed yet. In this paper, we develop a binomial model based on generalized linear model (GLM) that
incorporates exogenous information and past observations, offering greater flexibility and capability for capturing dynamic
dependencies. We then develop the sequential change-point detection for the model, which is based on the monitoring
scheme proposed in [9].

In next section, we will introduce the generalized Binomial AR(p) model, prove the Markov chain properties of time
series following the model when p = 1. We include a parameter estimation method in this section, along with proofs for
the consistency and asymptotic normality of the estimated parameters. We then demonstrate the sequential change-point
detection method for the generalized Binomial AR(1) model. In the subsequent section, we apply the model to weekly
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pneumonia and influenza mortality data, successfully identifying change points associated with the COVID-19 outbreak
using the proposed approach.

2. Binomial autoregressive model based on GLM
We define the binomial autoregressive model based on GLM as follows

    Xt| Xt − 1, Xt − 2, …, ℤt − 1, ℤt − 2, …, ~ Bin(n, πt(β)),  with g nπt β : = g μt =  βTℤt − 1,     (1)

in which n is the group size, g x = log x
n − x , and ℤt − 1 is a regressor including autoregressive variables, e.g.

Xt − 1, Xt − 2 or other forms of past information, exogenous variables that affect the time-dependent probability πt(β), or a
mixture of both. We will refer to the model as the generalized Binomial AR model afterwards.

In this paper, we focus on the properties and sequential change-point detection for the generalized Binomial AR(1)
model, incorporating the exogenous variable at t. That is, ℤt − 1 =  1, Xt − 1, Wt

T, where the exogenous variable {Wt} is
i.i.d. with a known PDF, and Wt ∈ a,b l with known a and b. 

2.1. Properties of the generalized Binomial AR(1) model and the estimated parameter 
In the following of this section, we first prove the statistical properties of the generalized Binomial AR(1) model.

Under certain regularity conditions, we provide a parameter estimation method, and show the consistency and the
asymptotic normality of the estimated parameter, β̂.

Lemma 2.1. The binomial time series {Xt} defined as (1) is a ψ-irreducible and aperiodic Markov chain. 
In [10], the authors prove that the Binary AR(1) model is ψ-irreducible. We can prove the ψ-irreducibility of the

generalized Binomial AR(1) following a similar approach. The process is aperiodic since all one-step transition
probabilities are strictly positive.

Theorem 2.1. {Xt} is a strictly stationary and geometrically ergodic process.
Define the drift operator as Δ V(x) =  ∫P(x, dy)V(y) −  V(x), where P is the transition probability, we first show that

the drift condition

                                                      Δ V x ≤  − β V x +  b 핝Ω x , x ∈ Ω,      (2)

holds when V x =  x + 1, b =  n + 1, and β = 1. According to [11], if a Markov chain is ψ-irreducible, aperiodic and
satisfies the drift condition (2), there exists a unique invariant measure μ. The strict stationarity of Xt  can be proven
directly from the definition of {Xt}. Furthermore, given that the chain is ψ-irreducible and aperiodic, the geometric
ergodicity of the chain follows immediately after the drift condition (2) is established.

For time-dependent cases, parameter estimation using maximum likelihood estimation (MLE) can be complicated.
Thanks to the statistical properties of the model, instead of using the likelihood function, we can take advantage of partial
likelihood, [12], for parameter estimation.

Definition 1. Denote the conditional distribution function following the generalized Binomial AR(1) model as
fβ Xt|Xt − 1, Wt . The partial likelihood is defined as

PL β =  ∏m
t = 1fβ(Xt|Xt − 1, Wt) ∝ ∏m

t = 1πt β Xt (1 − πt(β))n − Xt.

The partial score vector is defined as

                               PSVm β = ∇ log PL β = ∑m
t = 1ℤt − 1 Xt − nπt β ≜ ∑m

t = 1G(Xt, β).      (3)

From [13], we can conclude that G Xt, β  is stationary and ergodic. Based on the strict stationarity of Xt , it is easy to
prove that G Xt, β  is strictly stationary. 

The maximum partial likelihood estimation (MPLE) β̂ can be obtained by solving the equation
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                                                                              PSVm β  =  0.      (4)

Before proving the properties of β̂, we first propose the regularity condition for β.

Assumption 1. The parameter space of β, denoted as ℬ, is convex and compact, and the true parameter β0 is in the
interior of ℬ.

Theorem 2.2. Under Assumption 1,
(a) The MPLE β̂ is almost surely unique for all sufficiently large m.
(b) β̂ P→ β0 as m → ∞ .

(c) m(β̂ − β0)풟→N(0, − 피 ∇ G X1, β0
− 1) as m → ∞ .

In [14], the authors establish a set of regularity conditions under which the existence and uniqueness, and the
consistency of the PMLE β̂ hold and m(β̂ − β0)풟→N(0, − 피 ∇ G X1, β0

− 1) holds, as  m → ∞ . Under Definition 1 and
Assumption 1, it can be easily verified that the generalized Binomial AR(1) satisfies the regularity conditions, and the
properties follow.

In practice, due to the ergodicity of Xt  and the consistency of β̂, we are able to estimate the variance-covariance
matrix − 피 ∇ G X1, β0

− 1 by [ − ∑m
t = 1 ∇ G(Xt, β̂) / m] − 1 when m is large enough. Based on (3), ∇ G Xt, β̂ =  −

n ℤt − 1ℤT
t − 1

exp − β̂Tℤt − 1
1 + exp − β̂Tℤt − 1

2 .

3. Sequential change-point detection for the generalized Binomial AR(1) model
In this section, we will introduce the close-end monitoring scheme for the generalized Binomial AR(1) model. Given

that there are m initial observations and monitoring starts from m + 1, close-end monitoring means that the monitoring
process will be terminated if there is no change point detected within the Nm new observations after the initial
observations, where N is a fixed and predetermined constant. Denote the true parameter of the model for the first m
observations is  β0, the hypotheses are

H0: βt = β0,  for all t ∈ {m + 1, m + 2, ..., m + Nm},
Ha: ∃  k *  such that βt =  β0 for m + 1 ≤ m + k * ≤ m + Nm, and βt ≠ β0 for m + k * ≤ t ≤ m + Nm.
To ensure the validity of β̂ based on the first m observations, the time series should satisfy the non-contamination

assumptions.
Assumption 2. (a) There is no change point in the exogenous variable Wt.
(b) There is no change point in the first m observations Xt. 
Under Assumption 2 and (4), the MPLE β̂ satisfies ∑m

t = 1G(Xt, β̂) = 0. Denote ∑m + k
t = m + 1G Xt, β̂  as S m, k . Under H0

, due to the consistency of β̂, S m, k  is expected to be reasonably close to 0; otherwise, suppose a change point appears at
k *  and the process never comes back to the original one, S m,k , would be gradually far from 0 as more and more data
arise after X

m + k * . Following this idea, in this paper, we extend the monitoring scheme proposed in [9] to generalized
Binomial AR(1) case that H0 is rejected with a significance level α when 

ω2 m,k S m,k TAS(m,k) ≥ c(α),     (5)

where ω m,k = m − 1
2ρ k

m  is the weight function adjusting the sensitivity of the method, and A is a customized
symmetric positive definite matrix adjusting the magnitude of the statistic. The regularity conditions for ω m,k  are
included in [9]. c(α) can be estimated based on the asymptotic distribution of the statistics in (5). To find the asymptotic
distribution of (5), we first prove the following lemma and proposition.

Lemma 3.1. Under Assumption 1-2 and under H0,
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supk ≥ 1ω(m,k)|| ∑
t = m + 1

m + k

G Xt, β̂ − ( ∑
t = m + 1

m + k

G Xt, β0 − k
m

∑
t = 1

m

G Xt, β0 || =  op(1).

Proof. According to the regularity conditions for ω m,k in [9], limt→0
tγρ t < ∞  implies ρ t =  ρ k

m =  Op
k
m − γ

as t→0. Then, ω m,k = m − 1
2ρ k

m  =  Op k − γmγ − 1
2  as k

m→0. Similarly, ω m,k = Op m1
2k − 1  as k

m→ ∞ . There
always exist a constant C > 0 so that 

ω(m,k) ≤ Ck − γmγ − 1
2,  when k ≤ m,

Cm1
2k − 1,      when k > m.

  

From (4), we know that ∑m
t = 1G Xt, β̂ = 0,  then the norm component of the lemma can be written as 

(∑
t = m + 1

m + k
G(Xt, β̂) − G(Xt, β0)) − k

m
(∑

t = 1

m
(G(Xt, β̂) − G(Xt, β0)): = D1(m,k) − D2(m,k).

For the jth element in G(Xt,.), the following equation holds

∑
t = m + 1

m + k
Gj(Xt, β̂) − Gj(Xt, β0)) = ∑

t = m + 1

m + k
( ∇ Gj Xt, β0

T(β̂ − β0) +  1
2

β̂ − β0
T ∇ 2Gj(Xt, β * ) β̂ − β0 ),

where β *  is between β0 and β̂. Based on Definition 1, we can conclude that ∇ 2Gj(Xt, β * ) is bounded. The following
equation holds in a convex neighborhood of β0, Uβ0

∈ ℬ,

supk ≥ 1sup
β * ∈ Uβ0

1
k∑m + k

t = m + 1 ∇ 2Gj Xt, β *
∞ = Op(1).     (6)

Furthermore, by Birkhoff's Ergodic Theorem, the following equation holds 

1
k∑m + k

t = m + 1 ∇ G Xt, β0 − 피 ∇ G X1, β0 = op(1).     (7)

Combining (6), (7) and Theorem 2.2, we can show that

  supk ≥ 1ω m,k D1 m,k − k피 ∇ G X1, β0
T β̂ − β0

=supk ≥ 1ω m,k |∑m + k
t = m + 1( ∇ Gj Xt, β0 − 피 ∇ G(X1,β0))T(β̂ − β0) +  12 β̂ − β0

T ∇ 2Gj(Xt, β * ) β̂ − β0 |
= supk ≥ 1ω m,k op

k
m + Op

k
m

=supk ≤ mOp k1 − γmγ − 3
2 + sup m < k ≤ mop

k
m 1 − γ + supk > mOp

1
m = op(1).              (8)

Analogously, 

                                supk ≥ 1ω m,k D2 m,k − k피 ∇ G X1, β0
T β̂ − β0 = op(1).     (9)

Combining (8) and (9) , supk ≥ 1ω(m,k)||∑m + k
t = m + 1G Xt, β̂ − (∑m + k

t = m + 1G Xt, β0 − k
m∑m

t = 1G Xt, β0 || =  op(1).
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Proposition 3.1. For any fixed N > 0, under Assumption 1-2 and under H0 , as m→ ∞ , the sequence of functions
1
m ∑ ms

t = 1G Xt, β0 , for 0 < s ≤ N, converges weakly to a Wiener process W s  with covariance matrix Σ =
피[G X1, β0 G X1, β0

T] < ∞ .

Proof. Based on the functional central limit theorem in [15], if the process G Xt, β0  is
(1). bounded,
(2). strictly stationary,
(3). 피G Xt, β0 =  0,
(4). a strong mixing process,
and satisfies the two inequalities ∑ ∞

n = 1αG n < ∞ , and αG n ≤
MG

n log n , where αG(n) is the strong mixing coefficient
for G Xt, β0 , then G Xt, β0  converges weakly to a Wiener process with covariance matrix

 

Σ = 피 G X1, β0
TG X1, β0 + 2∑

t = 2

∞
피 G X1, β0

TG Xt, β0 < ∞ .

Conditions (1)-(3) can be easily verified by the definition of G Xt, β0  ((3)) and Theorem 2.1. Then we show the
process G Xt, β0  is strong mixing. In Theorem 3.1, we have proved that Xt  is strictly stationary and geometrically
ergodic. Given that Wt  is an i.i.d. sequence, it is naturally strictly stationary and geometrically ergodic. So ℤt − 1 =

1, Xt − 1, Wt  is strictly stationary and geometrically ergodic. By [16], ℤt − 1 has β n = Op(e − θn), θ > 0. The definition
of the measure β can be found in [16]. What's worth pointing out is that according to [16], 

2α n ≤ β n ,

where α(n) is the strong mixing coefficient for {ℤt}. That is, for {ℤt}, there exists a θ > 0 so that the strong mixing
coefficient 

α(n) = supj ∈ ℕ + α(ℱj
0,ℱ ∞

j + n) = supj ∈ ℕ + |P(A ∩ B) − P(A)P(B)| = Op(e − θn), for ∀ A ∈ ℱj
0, B ∈ ℱ ∞

j + n,

where ℱL
J = σ ℤt,J ≤ t ≤ L . Then it is easy to conclude that αG n = Op e − θn . As n→ ∞ , αG n →0, which implies

that G Xt, β0  is a strong mixing process. Additionally, we can find a constant M > 0 such that

αG n ≤ Me − θn, ∀ n ∈ ℕ + ,  

then the inequality

∑ ∞
n = 1αG n ≤ ∑ ∞

n = 1Me − θn < ∞       (10)

holds.

The inequality
αG n ≤

MG
n log n     (11)

can be proven by defining MG = max
n ∈ ℕ + M e − θnn log n , which is guaranteed to exist. According to Theorem 1 in

[15], (10) and (11) imply that
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1

m
∑
t = 1

ms

G Xt,β0 풟→W(s),  as m→ ∞ ,

where W(s) is a Wiener process with covariance 

Σ = 피 G X1, β0
TG X1, β0 + 2∑ ∞

t = 2피 G X1, β0
TG Xt, β0 < ∞ .

For any t > 1,

     피 G X1, β0
TG Xt,β0 = 피(피(G X1, β0

TG Xt,β0 |풞t))
  = 피(G X1,β0 ℤt − 1피((Xt − nπt(β0))|풞t))
                                             = 0,

where 풞t = σ(Wt, Xt − 1, Wt − 1, Xt − 2,…,W0, X1).

Therefore, the covariance matrix can be simplified as 

Σ = 피[G X1, β0 G X1, β0
T] < ∞ .

Theorem 3.1. Under H0, for any fixed symmetric positive definite matrix A, 

limm→ ∞ P sup1 ≤ k ≤ Nm ω m,k 2S m,k TAS m,k ≤ c
                                                      = P(sup0 < s ≤ N ρ2 s W1 s − sW2 1 TA(W1 s − sW2 1 ) ≤ c,

where W1(.) and W2(.) are independent Wiener processes with the same covariance matrix Σ =
피[G X1, β0 G X1, β0

T].

Proof. Denote ZTAZ as ||Z||2
A. By using Lemma 3.1, the test statistic

                                 sup1 ≤ k ≤ Nm ω m,k 2||S m,k ||2
A 

          = sup1 ≤ k ≤ Nm
1

m
ρ k

m
2||∑

t = m + 1

m + k
G(Xt, β0) −  k

m
∑
t = 1

m

G(Xt, β0)||2
A +  op(1)

                                = sup0 < s ≤ Nρ s 2|| 1
m∑m + k

t = m + 1G(Xt, β0) −  1
m

k
m∑m

t = 1G(Xt, β0)||2
A + op(1),     (12)

where s ≜ k
m.

According to Proposition 3.1, as m→ ∞ , 

1
m∑m + k

t = m + 1G(Xt, β0) =  1
m∑m + k

t = 1 G Xt, β0 −  ∑m
t = 1G Xt, β0 풟→W1

k
m : =  W1 s ,    (13)

and 
1
m

k
m∑m

t = 1G Xt, β0 풟→ sW2(1),    (14)
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of which W1 .  and W2 . are Wiener processes defined in Proposition 3.1. The continuity of
ρ2(s)||W1 s − sW2 1 ||2

A on s ∈ (0, N], together with (12), (13) and (14) yield that

limm→ ∞ P sup1 ≤ k ≤ Nm ω m,k 2S m,k TAS m,k ≤ c
                                                      = P(sup0 < s ≤ N ρ2 s W1 s − sW2 1 TA(W1 s − sW2 1 ) ≤ c,
for a given threshold c.

The covariance matrix Σ is unknown. Due to the ergodicity of Xt  and the consistency of β̂, we can use
∑m

t = 1G Xt,  β̂ GT(Xt, β̂) / m as the estimation of the covariance matrix.

4. Application to Weekly Pneumonia & Influenza Mortality Rate
In this section, we apply the monitoring procedure to a binomial time series recording the weekly changes in the

Pneumonia & Influenza (P&I) mortality rate from the 1st week of 2017 to the 5th week of 2021. The method successfully
identifies several change points associated with the COVID-19 outbreak.

4.1. Data
We collect the statewide weekly P&I mortality rate of from the 40th week of 2013 (CDC treats the 40th week of each

year as the start of the corresponding flu season) to the 5th week of 20211. The fluctuation of P&I rates reflects the extent
of the spread of pneumonia and influenza. For each state, we first calculate the weekly average P&I rate from 2013 to
2016, the years without severe pandemics. Treating the weekly average rates from 2013 to 2016 as benchmarks, we create
a binary time series for each state from the 1st week of 2017 to the 5th week of 2021, indicating whether the P&I rate
exceeds the corresponding benchmark value. We choose the binary time series of the six states: California, Colorado,
Illinois, Florida, New York and Washington, and the sum of the six binary time series is a Binomial time series with total
6. Geographically, the six states can represent the nationwide flu activity trend. Meanwhile, the six states are far enough to
be considered mutually independent at each time.

4.2. Detection Results
As a preliminary analysis of the data set, we calculate the AIC of the fitted generalized Binomial AR(1) model with

ℤt − 1 =  1, Xt − 1 , and the AIC of a simple Binomial model with a constant π that all the observations are considered as
i.i.d random variables following Bin 6, π . The AIC of the simple Binomial model is 2228.31 and the AIC of the
generalized Binomial AR(1) model is 1209.48. Compared to a simple Binomial model, the generalized Binomial AR(1)
model can capture the dependence between observations and estimate the time-varying πt.

For the monitoring process, we use the weight function ω m,k =  m − 1
2 1 + k

m − 1 k
m + k

− γ, 0 ≤ γ < 1
2, which has

been widely used in the literature, e.g. [2] and [3]. Table 1 shows the change points detected by models built on different
past observations. We can see that the sensitivity of the method increases as γ increases. Except the only data point when
m = 100 and γ = 0.4, all other change points are in April, 2020. When m = 150 and γ = 0.25, 0.4, the detected change
points are 4/4/2020. Notably, on 3/11/2020 (the 166th observation), the WHO officially declared the COVID-19 outbreak a
pandemic2. That is, the method can successfully detect change points associated with the COVID-19 outbreak. 

Table 1: The detected change points relying on models based on different past observations

                                                
1 Data source: https://gis.cdc.gov/grasp/fluview/mortality.html

2 https://www.cdc.gov/museum/timeline/covid19.html

/footnote%7bhttps:/gis.cdc.gov/grasp/fluview/mortality.html%7d
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Number of past observations m=100 m=130 m=150
Detection launch date 12/08/2018 07/06/2019 11/23/2019

γ = 0 04/18/2020 04/25/2020 04/11/2020
γ = 0.25 04/11/2020 04/18/2020 04/04/2020
γ = 0.4 01/19/2019 04/18/2020 04/04/2020
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