
Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) 

Barcelona, Spain – July 20 - 21, 2015 

Paper No. 281 

281-1 

 

Flow of Fluids and Solids at the Nanoscale 
 

Thomas Prevenslik 
QED Radiations 

Discovery Bay, Hong Kong, China 

thomas@nanoqed.org 

 

 
Abstract –The Hagen-Poiseuille equation of classical fluid flow that assumes a no-slip condition at the wall cannot 

explain the dramatic increase in flow found in nanochannels. Even if slip is assumed at the wall, the calculated slip-

lengths are found exceed the typical slip on non-wetting surfaces by 2 to 3 orders of magnitude. Similarly, MD 

simulations of nanochannel flow cannot explain the flow enhancement. MD stands for molecular dynamics.  In 

solids, classical kMC cannot explain how solid crystals in a nanotube under the influence of an electric current flow 

through a constriction that is smaller than the crystal itself. kMC stands for kinetic Monte Carlo. However, QM and 

not classical physics governs the nanoscale. QM stands for quantum mechanics. At the nanocale, fluid and solid 

atoms are placed under EM confinement that by QM requires their heat capacity to vanish. EM stands for 

electromagnetic. Unlike classical physics, QM precludes the conservation of viscous frictional heat by the fluid and 

solid atoms by the usual increase in temperature. MD and kMC based in classical physics therefore require 

modification for application at the nanoscale.  Conservation of viscous heat at the nanoscale proceeds by QED 

inducing creation of EM radiation that ionizes the atoms to cause atomic separation under Coulomb charge 

repulsion. QED stands for quantum electrodynamics. MD simulations of liquid argon flow in a nanochannel using a 

discrete 2D model show the viscosity to vanish suggest the flow is upper bound by the frictionless Bernoulli 

equation, the simplified extension of which to the flow of a solid crystal through a nanotube suggests the solid, like 

the fluid moves as a loosely bound collection of charged atoms.   
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1. Introduction 
 Water flow observed through nanochannels in membranes of CNTs is found to be 2-5 orders-of-

magnitude greater than those predicted by the no-slip Hagen-Poiseuille equation of classical physics 

Majunder, et al. (2005), Holt et al. (2006), Du, et al. (2011). CNT stands for carbon nanotube. To explain 

this surprising flow enhancement, slip at the wall of the nanotube is assumed because of the non-wetting 

nature of CNTs.  For bulk water viscosity, Majunder, et al. (2005) showed the Hagen-Poiseuille relation 

required slip lengths of 50 microns to reproduce the measured flow in 7 nm CNT membranes. Since MD 

simulations by Verweij et al. (2007) indicate that the water/graphene slip length is on the order of 50 nm, 

the required slip-length is 1000 times larger than that of non-wetting boundaries.   Because of this, slip 

cannot be the mechanism for the significant flow enhancement in nanochannels.  

 With regard to the flow of solids, experiments by Begtrup, et al. (2009) and Loffler et al. (2011) 

demonstrated the electrically induced motion of metal crystals through smooth uniform nanochannels of 

carbon nanotubes does not occur by melting. When current flows along the tube length, electromigration 

is thought to move in the crystals in the same direction as the electron flow. Recently, Coh et al. (2013) 

found that iron crystals under an electric current reform atom-by-atom to fit through a constriction in the 

nanochannel that is smaller than the crystal itself. Classical kMC simulations dependent on temperature 

inconsistent with QM were thought to explain crystal motion. But QM precludes temperature changes in 

nanotubes suggesting loss of atomic cohesion is caused by another mechanism.  

 In this regard, the flow of fluids and solids at the nanoscale is more likely the consequence of the size 

effect of QM causing the viscosity of the fluid or cohesion of the solid to vanish that otherwise does not 
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occur at the macroscale. How QM causes viscosity and cohesion to vanish is an important purpose of this 

paper. 

  

1. 1. Heat Capacity of the Atom  
 Vanishing viscosity of a fluid or cohesiveness of a solid at the nanoscale is the consequence of QM 

denying the atom the heat capacity to conserve viscous heat by an increase in temperature. Fig. 1 

compares the Planck energy E of the atom by classical physics with QM for the atom as a harmonic 

oscillator given by Einstein and Hopf (1910). 

Fig. 1. Heat capacity of the atom at 300 K 

In the inset, h is Planck’s constant, c is the speed of light, and  is wavelength, 

k is Boltzmann’s constant and T absolute temperature 

 
 Classical physics always allows the atom to have kT energy. QM differs in that heat capacity given 

by thermal kT energy of the atom depends on the TIR wavelength  of EM confinement. TIR stands for 

total internal reflection. By QM, kT energy is only available for atoms at the macroscale, i.e., for  > T 

and otherwise is < kT. Because of QM, the fluid atoms in the nanochannel cannot conserve viscous heat 

by an increase in temperature. Similarly, the solid crystal atoms in the nanotube cannot increase in 

temperature to conserve Joule heat.  

 

1. 2. Qed Induced Em Radiation 
 The QM requirement that the heat capacity of fluid atoms in nanochannels vanishes under TIR 

confinement precludes conservation of viscous heat by the usual increase in temperature. Instead, QED 

conserves viscous heat produced by the friction between fluid molecules in flow through the nanochannel 

by inducing the creation of EM radiation that charges the atoms in the molecules or is lost to the 

surroundings as shown by Prevenslik (2015). At the TIR confinement wavelength λ of the nanochannel, 

the Planck energy of QED radiation is sufficiently high to ionize the fluid molecules and charge the atoms 

to produce Coulomb repulsion between the atoms, the separation of which causing the viscosity to vanish. 

As shown for applications in Web-1, the TIR wavelength λ = 2 nd, where n is the refractive index of the 

fluid and d the nanochannel diameter or height.  For d < 100 nm, the EM radiation has wavelengths λ in 

the UV and beyond, i.e., λ < 300 nm.  

 In nanochannels, QED induced EM radiation has sufficient Planck energy to ionize most fluid 

molecules having ionization potentials of ~ 10 eV, i.e., wavelength λ < 125 nm that for n = 1.5 requires 

nanochannels having d < 45 nm. What this means is the fluid viscosity in nanochannels vanishes as the 

fluid is highly charged with Coulomb repulsion producing a loosely bound frictionless state of flowing 

atoms. 
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2. Purpose 
 Perform MD simulations valid by QM to show the viscosity of liquid argon vanishes in 

nanochannels. Make simplified extensions of the findings to the flow of a crystal in a nanotube. 

 

3. Analysis and Results 
 Perform MD simulations valid by QM to show the viscosity of liquid argon vanishes in 

nanochannels.  

 

3. 1. Validity of MD  
 To show fluid viscosity vanishes in nanochannels, MD simulations would seem especially suited. 

However, MD computer programs, e.g., LAMPS (2010) finding basis in classical physics allow the atom 

to have the heat capacity at the nanoscale that is forbidden by QM. What this means is the MD 

simulations of nanochannel flow that abound the literature, e.g., Thomas and McGaughey (2008), Li 

(2009) are invalid by QM as shown by Prevenslik (2013). Because of this, the traditional MD computer 

algorithms given by Allen and Tildesley (1987) were modified to simulate the QM effect of vanishing 

heat capacity on fluid viscosity. 

 

3. 2. Lennard-Jones Potentials  
 The reduction of viscosity in MD may be understood by considering the L-J potential between fluid 

atoms. L-J stands for Lennard-Jones. Here, the L-J parameter σ is the repulsive atom core and ε the 

attractive potential. Fig. 2 shows QED induced charge offsetting the ε attractive potential of the atom 

giving a zero net (atom + charge) attractive potential. In this way, the fluid viscosity vanishes as the 

atoms are no longer in frictional contact with each other.   

 

 
Fig. 2. QED charging of Fluid Atoms producing Zero  Potential 

  

3. 3. MD Simulation 
 MD simulations valid by QM require the viscous heat is not conserved by an increase in temperature 

and instead by charging the atoms.  MD solutions are therefore made near absolute zero temperature, say 

0.001 K to avoid temperature dependent atomic velocities. Usually, MD solutions of nanochannel flow 

are performed with Lees and Edwards (1972) periodic boundary conditions. However, charging the atoms 

requires long range corrections that may be avoided by using a discrete MD model and considering all 

atoms without invoking a cut-off in force computations. On this basis, a discrete 2D model comprising 

100 atoms in a BCC configuration of liquid argon was selected as shown in Fig. 3. 
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Fig. 3. Nanochannel 2D - MD Model 

 

 The BCC configuration assumed liquid argon at a density of 1407 kg/m
3
. The atomic spacing was 

3.62 Å in a 32.6 Å square MD computation box. The L-J potential for argon taken was σ = 3.45 Å and ε = 

120k. Time steps were < 2 fs. The MD loading was a velocity gradient of 3.06 x10
10 

s
-1 

normal to the 

flow direction having velocity of 100 m/s over the height of the MD box. Unlike Lees and Edwards 

(1972), the MD computation box becomes highly distorted after 150000 iterations. The distortion after 

25000 iterations is shown in Fig. 4. 

 

Fig. 4. MD Solutions – Distorted Computation Box 

 

 The Coulomb repulsion between all atoms is directly simulated by QED inducing the creation of 

charge from conserving viscous friction heat instead of increasing temperature. The electrostatic potential 

UES, for atoms separated by distance R having electron charge e is,  

 

𝑈𝐸𝑆 =
𝑒2

4𝑜𝑅
     (1)        

                          

 where,  o is the permittivity of the vacuum. The L-J potential ULJ between an atom pair, 

 

𝑈𝐿𝐽 = 4 [(


𝑅
)

12
− (



𝑅
)

6
]   (2) 

 

 The L-J potential minimum occurs at R = 2
1/6
 giving ULJ = - . The fraction c of the available 

electrostatic energy UES to counter the attractive potential  is,  

                         

𝑐 =
𝑈𝐿𝐽

𝑈𝐸𝑆
  =

421/6𝑜

𝑒2   (3) 
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 Taking  = 120k for argon, the fraction c = 0.0027. The remaining (1-c) UES energy is radiated as 

EM radiation to the surroundings.  However, Coulomb repulsion is collectively enhanced above that for a 

single atom pair, and therefore  < c. MD solutions were obtained for various  to determine the 

optimum at which the viscosity vanished. By trial and error,  = 0.0006 < c was found optimum as 

shown in Fig. 6. 

Fig. 6. MD with Coulomb Repulsion   = 120k and  = 0.0006 

 

 The MD solution with Coulomb repulsion for Argon at   = 120k is observed to vanish. However,  

= 0.0006 < c = 0.0027 means the collective effect of about 5 atom interactions is occurring.  Flow 

enhancement above Hagen-Poiseuille at bulk viscosity is indeed frictionless and may be upper bound by 

the Bernoulli equation. 

 

4. Discussion 
 

4. 1. Modified Hagen-Poiseuille Equation  
 The Hagen-Poiseuille equation modified by Sisan and Lichter (2011) for slip gives the flow Q 

through a circular nanochannel of radius r under the pressure drop P, 

                                                    

𝑄 =
𝑟3(𝑟+4𝑏)

8𝐿
𝑃   (4) 

 

where,  is the viscosity,  L the channel length, and b the slip length.  

 

 The QED induced reduction in viscosity  is observed to inversely enhance the flow Q.  However, 

the flow Q is even further enhanced by slip b. Regardless, the QED induced reduction in viscosity is the 

dominant factor in flow enhancement.  

 

4. 2. Exit Losses 
 Unbounded flow in nanochannels Sisan and Lichter (2011) is consistent with QED induced vanishing 

viscosity. As long as the fluid is under TIR confinement by the channel walls, the flow is indeed 

frictionless. However, the fluid must eventually leave the nanochannel at which time there is no TIR 

confinement whereupon the atom regains it classical behavior and the flow velocity is diminished by 

viscous friction. Nevertheless, flow within the nanochannel is indeed frictionless. 
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4. 3. Bernoulli Equation 
 Vanishing viscosity suggests the flow in nanochannels should approach the frictionless flow given by 

the Bernoulli equation. The development of the Bernoulli equation from the QED energy equation in 

nanochannels is illustrated in Fig. 7. 

 

 
Fig. 7. Bernoulli Equation in Nanochannels 

 

 Fig. 1 describes an incompressible fluid at the channel inlet in the Pi Ti Vi state leaves the channel in 

the outlet Po To Vo state. P stands for pressure T for temperature, V velocity, m mass flow, and  density. 

Classically, viscous friction causes the fluid temperature to increase depending on the heat capacity C. 

QM differs as temperature changes do not occur because C vanishes. Instead, QED converts the viscous 

heat into EM radiation that ionizes the fluid molecules, or is lost to the surroundings. Since the inlet 

plenum velocity Vi is negligible, and since the ideal fluid is absent viscous heating, QQED radiation to the 

surroundings also vanishes, the consequence of which is the nanochannel flow is governed by the 

Bernoulli equation for frictionless flow.  

 In nanochannels, the application of the Bernoulli equation to flow measurements Majunder, et al. 

(2005), Holt et al. (2006), Du, et al. (2011) from experiments on various fluids reported in the literature in 

Table 1 of Sisan and Lichter (2011) is reproduced below in Table 1. 

 
Table. 1. Nanochannel Flow compared to Bernoulli Equation 
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 QM is the actual flow computed by Sisan and Lichter (2011) from published velocities. QM,0  is the 

flow given by the Bernoulli equation. Here,   = QM / QM, 0 is the ratio of actual flow to the Bernoulli 

equation.  As noted by Sisan and Lichter (2011) the  > 1 do not comply with known physics of fluid. 

What this means is  QM  <  QM,0 or  < 1 or the frictionless Bernoulli flow is the physical upper bound for 

flow in nanochannels. However, water at CNT radii of 3.5 nm by Majunder et al. (2005), Holt et al.(2006) 

and radii of 0.8 nm by Du et al. (2011) shows   > 1 and is questionable. Nevertheless, the data for 

ethanol, isopropanol, decane, and hexane, show  < 1 or is reasonably close to 1 to support the argument 

that Bernoulli flow is indeed a valid estimate of to upper bound flow in nanochannels 

 

4. 4. Extensions to Solid Crystals in Nanotubes 
 With regard to the flow of solids, electrically induced motion of metal crystals through smooth 

uniform nanochannels of carbon nanotubes is generally thought caused by electromigration based on  

kMC simulations.  Recently, Coh et al. (2013) using kMC found that iron crystals under an electric 

current reform atom-by-atom to fit through a constriction in the nanochannel that is smaller than the 

crystal itself. However, classical kMC simulations assume the atom has kT energy, but are invalid as QM 

requires kT to vanish as shown in Fig. 1. In this regard, Fig. 8 shows the analytical fit to the kMC 

solutions for kT = 350 K thought to simulate the experimental crystal velocity V. But as kT  0, V 

vanishes, i.e., the crystal does not move contrary to the experiment.   

 

 
Fig. 8. Vanishing crystal velocity in kMC Simulations. 

(A = 3.3 m/s, B = 1.2 eV, C = 1.4 nm) 

        

 Instead of temperature changes, QED conserves the Joule heat from the current passing through the 

nanotube by charging the atoms to produce a charge gradient in the nanotube.  If the crystal is larger than 

the tube, the crystal also charges, but if the crystal is free to move within the nanotube charging is 

unlikely and crystal motion relies on its residual charge. For a voltage difference V* acting across 

nanotube length L, the force F across a crystal atom of dimension b having charge q = unit electron 

charge, 

 

F = q
V∗

L
b  (5) 

 

 Hence, the pressure P across the atom is, P = F / b
2
.  Similar to the Bernoulli equation as an upper 

bound to the fluid flow through the nanochannel, the velocity V of the solid crystal atom, 

 

V = √
2P


= √

2qV∗

bL
  (6) 
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 The Begtrup, et al.(2009) experiment gives V = 1.4 micron/s for L=2 micron long nanotube and V* 

= 0.2 Volts. For iron, b =0.22 nm and  = 7880 kg/m
3
. Hence, V = 135 microns/s which is 2 orders of 

magnitude higher than found experimentally. Although the Bernoulli equation does upper bound the 

crystal atom velocity, the QED simulation although simple may not be sufficiently accurate. 

 

5. Conclusion 
 The flow of fluids in nanochannels is reasonably upper bound by the frictionless Bernoulli equation. 

However, the flow of solids in nanotubes may require review to determine if higher flow velocities are 

occurring in the experiment to obtain closer agreement with the upper bound given by the Bernoulli 

equation. 
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