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Abstract –Droplet dynamics in a recirculating flow is investigated in this work. In this regard, Lattice Boltzmann 

simulation is performed to study the problem. To give a perspective on the physics of this problem, time evolution 

of the droplet behaviour and the global flow pattern is investigated. Finding show that droplets with different density 

ratios have different path lines and different shapes of deformations. Also, diameter effects as an important 

parameter that affects the dynamics of the droplet are studied. Another parameter which should be regarded is the 

first position of the droplet in the flow domain due to the forces that global flow pattern exert on the drop and 

change the shape of the drop. To create a recirculation flow a lid driven cavity with moving upper wall is considered 

here.    
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1. Introduction 

 Investigation of droplet and bubble dynamics is one of the challenging phenomena in many science 

and engineering problems such as emulsification processes, food industry, polymer blending and oil 

recovery, and in deformation of biological cells (Bruijin, 1989). In these processes, two immiscible fluids 

are mixed to obtain a distribution of droplets of one of the liquids in the other. So, many investigations 

have done from experimental, numerical, and theoretical points of view.  

 Megias-Alguacil et al. (2005), A. Javadi et al. (2010), A. Javadi et al. (2012) and A. Javadi et al. 

(2014) have carried out experimental studies on droplet characteristics. Also, Chang Zhi et al. (2007) and 

Janssen et al. (2008) have done numerical studies on this area. Among many numerical studies, some 

researches applied lattice Boltzmann method (LBM) to simulate the dynamics, deformation and break up 

of droplet. Inamuro et al. (2003), Sman et al. (2008) and Farokhirad et al. (2013) are examples of those 

studied droplet dynamics by LBM. 

 The main aim of the present paper is to study the dynamics of a single droplet moving in a 

recirculating flow. According to the authors’ investigations, little study is carried out on droplet dynamics 

in recirculating flows. The deformation and behaviour of the droplet is simulated by LBM. Compared 

with other two-phase LBMs based on (Shan and Chen, 1993, Swift et al., 1996), the present LBM (Lee, 

2009, Lee and Liu, 2010) is capable of eliminating the parasitic currents and dealing with higher density 

and viscosity ratios, but it could be more computationally expensive. This paper is organized as follows: 

in section 2, the problem description and the numerical method applied in this study is briefly reviewed. 

Section 3, presents the validation and results. In section 5, the conclusion of the present study is explained 

in a few words.  
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2. Problem Description and Numerical Method 
 The schematic of the configuration analyzed in this study is illustrated in Fig. 1. A circular droplet is 

put in a cavity that the upper wall has the velocity U. The droplet will move and rotate in the cavity 

dependant on its density, its diameter, its first position in the cavity and the velocity of the moving wall. 

 

 
Fig. 1. Geometrical configuration of the problem . 

 

 Two particle distribution functions, gα and hα, are applied in the present LBM for binary fluids (Lee 

and Liu, 2010). The function  hα is used as a phase-field function for the transport of the composition C 

of one component, and the function gα is used for the calculation of pressure and momentum of the two-

component mixture. The discrete Boltzmann equations for the phase-field advection equation and the 

pressure evolution and momentum equations are, respectively: 
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 where the equilibrium distribution functions are given as 
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 In these equations, eα represents discrete lattice velocities in the direction of α, u is volume averaged 

velocity, cs is the basic speed on the lattice, ρ is the mixture density, λ is the relaxation time, tα is the 

weighting factor, μ is the chemical potential and M is the mobility in the Cahn-Hilliard diffusion. Also, Γα 

is defined as 

 

Γ𝛼 = 𝑡𝛼 [1 +
𝒆𝛼.𝒖

𝑐𝑠
2 +

(𝒆𝛼.𝒖)2

2𝑐𝑠
4 −

(𝒖.𝒖)

2𝑐𝑠
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 The composition, momentum and dynamic pressure can be obtained by taking the moments of hα 

and gα: 

 

U 
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𝐶 = ∑ ℎ𝛼𝛼 ,   (6a) 

 

𝜌𝒖 =
1

𝑐𝑠
2 ∑ 𝒆𝛼𝑔𝛼,        𝛼   (6b) 

 

𝑝 = ∑ 𝑔𝛼 .       𝛼   (6c) 

 

 For detailed discretization of Eqs. (1) and (2), readers are referred to Lee and Liu (2010). 

 The mixture density ρ can be measured as ρ = ρhC + ρl(1 − C), in which ρh and ρl are the bulk 

densities of two fluids. The mixing energy density for binary fluids can be calculated as E0 (C, ∇C)  =
 E0 (C) + κ|∇C|2/2, where κ is the gradient parameter and E0 (C)  = βC2 (1 − C)2  is the bulk energy 

density with constant β (Lee and Liu, 2010). The equilibrium profile is obtained by minimizing the 

mixing energy. The equilibrium interface profile is then C(z) = 1/2 + tanh(2z/D)/2, where z is the 

coordinate normal to the plane interface and D  is the numerical interface thickness. Having D  and 

interfacial tension σ, β and κcan be determined as β = 12σ/D and κ = βD2/8. 

 

3. Results and Discussion 
 In this section, findings of the present study are illustrated. First, the results are verified and in 

continuance, physics of the flow is studied. In later sections, effect of parameters such as density ratio, 

droplet diameter and its first position on droplet deformation and its path line are studied.  

 

3. 1. Verification of Results 

 In order to verify the results, a circular drop with an initial radius R = 23 in lattice unit is placed at 

the center of a cavity with 350×350 grid domain. The gas and liquid densities are 𝜌g = 0.01, 𝜌𝑙 = 1. The 

velocity vectors at the interface and global flow in the cavity are shown in Fig. 2 for different positions of 

the droplet in its path line when Re = 1000. This figure demonstrates the capability of the model for 

eliminating spurious currents, too. It should be mentioned that in all of our results, droplet radius unit is 

lattice unit and Reynolds number is measure as 𝑅𝑒 =
𝑈𝐿

𝜈
, in which 𝑈 is the velocity of the upper wall, 𝐿 is 

the width of the cavity and 𝜈 is the kinematic viscosity. Also, 𝜎 is the surface tension of the fluid.     

 

3. 2. Physics of the Flow 

 To study different aspects of the flow pattern and droplet motion in the cavity, time evolution of flow 

pattern and droplet behavior in the cavity is illustrated in Fig. 3. In the first seconds, 𝑡 = 0.15𝑠, (Fig. 3a), 

the droplet moves in the directions of the flow in the cavity and a vortex is formed at the right top corner. 

By passing time at 𝑡 = 0.3𝑠, this droplet has slightly deformed and moved toward the upper wall, Fig. 3b. 

In later seconds, the primary vortex and the separation bubble has grown more and the droplet is in an 

upper position than before, 𝑡 = 0.45𝑠. Part d shows that by increasing time, the droplet has moved to near 

the upper wall and it has a great deformation, because of high shear rate in this region. Also, a small 

vortex is formed behind it and the primary vortex has moved toward the center of the cavity. Letting the 

flow in the cavity develop more, the droplet circulates by the global flow in the cavity and deforms 

according to the forces that would experience in different positions, such that it deforms much at the right 

corner and bottom of the cavity. Generally, it can be seen that the droplet experiences more shear in the 

right side of the cavity since the separation bubble is formed from this position and the developing of the 

global flow pattern in the cavity is from this region. Finally, in part i, it can be seen that two corner 

vortices of the bottom have formed and the droplet is moving upward again.  

 

  3. 3. Effect of Different Parameters 

In order to have a better study of the considered problem, effect of density ratio on the droplet shape and 

its path line are studied in Fig. 4. By increasing the density ratio from 10 to 100, the deformation of the 

droplet and its path line changes considerably, such that the droplet has a dramatic deformation near the 
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wall where 𝜌ℎ/𝜌𝑙 = 10. Also, due to its lower inertia, it has moved longer than the heavier droplet. This 

phenomenon can be seen clearly in Fig. 4.  

 

            
                      (a)                                                                  (b)                                                               (c) 

             
                     (d)                                                               (e)                                                           (f) 

Fig. 2. Velocity vectors in the cavity for different positions of the droplet with 𝐶 = 0.5 in its path line. 

 

Another parameter which is studied is the effect of droplet diameter on its path line. As shown in Fig. 5, 

by expanding the droplet diameter, the droplet movement is slower and its path line has more curvature. 

This is because it has more inertia to resist against the global cavity flow. This point is more significant 

when the R = 35 lattice units.   

 Our findings show that first position of the droplet in the cavity has a great effect on its shape during 

circulating in it with global flow. Fig. 6 illustrates two droplets with two different first positions. In part a, 

droplet first position is from the center of the cavity while in part b, the droplet move from the center of 

left bottom quarter. In part b, the droplet begins to deform when it gets near to the upper wall and forms 

like an oval.      

 

4. Conclusion 
 In this paper, a study of droplet behaviour in a recirculating flow is done numerically. Lattice 

Boltzmann method is applied to simulate the problem physics. To give a perspective of the flow field and 

droplet dynamics, time evolution of the fluid flow and droplet movement is investigated for 𝑅𝑒 =  1000, 

𝜎 = 0.001 and R = 23 lattice units. Findings show that walls and the global flow pattern of the cavity 

have great effects on droplet motion such that the droplet experiences more shear near walls especially at 

the right hand side. In continuance, the problem is studied for different values of droplet diameter and 

density ratio. The results showed that because of experiencing different forces, the droplet moves 

different path with different shapes when the density ratio and the droplet size is changes. The higher 

density ratio and the higher droplet size, the shorter path line and the more curvature on the path.  Also, 

first position of the droplet affects the shape and path line of the droplet.   
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                       𝑡 =  0.15𝑠                                              𝑡 =  0.3𝑠                                                   𝑡 =  0.45𝑠 

               
                       𝑡 =  0.6𝑠                                                𝑡 =  0.75𝑠                                              𝑡 =  0.9𝑠 

             
                   𝑡 =  1.05𝑠                                             𝑡 =  1.2𝑠                                                 𝑡 =  1.35𝑠 

Fig. 3. Time evolution of flow pattern and droplet behaviour in the cavity for 𝐶 = 0.5, 𝜌ℎ  / 𝜌𝑙  =  10, 𝑅𝑒 =  1000 

𝑅 =  23 and 𝜎 =  0.001 . 
 

  
Fig. 4. Behavior and path lines of droplets with different density ratios, 𝐶 = 0.5, 𝑅𝑒 =  1000, 𝜎 =  0.001 and 

𝑅 =  23. 
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Fig. 5. Effect of diameter on path lines of droplets, 𝐶 = 0.5, 𝑅𝑒 =  1000, Density Ratio = 100 and 𝜎 =  0.001 

 

 
                                                      (a)                                                                  (b)          

Fig. 6. Effect of droplet first position on its, 𝐶 = 0.5, 𝑅𝑒 =  1000, 𝜎 =  0.001and 𝑅 =  23. 
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