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Abstract -The stability of stably stratified mixed convective flow in a vertical channel is examined by use of weakly
nonlinear stability analysis. The nonlinear results are presented for fluid as water (Prandtl number (Pr) equal to 7) and
a fixed Reynolds number Re equal to 1000. The weakly nonlinear analysis predicts only supercritical bifurcation at
and beyond the critical Rayleigh number (Ra). The equilibrium amplitude increases beyond the critical point. Due
to nonlinear interaction, a substantial enhancement in heat transfer rate is observed from the basic state beyond the
bifurcation point. The the impact of nonlinear interaction of waves on pattern of secondary flow is also studied and
found it distorts the fundamental wave shape.
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1 Introduction
Mixed convective flow through vertical ducts is encountered in a wide class of application such as nuclear
reactor, heat exchanger, electronic equipment, etc. The instability and transition characteristics of non-
isothermal flow (mixed convective flow) differ substantially from those of an isothermal flow (Scheele and
Hanratty, 1962; Yao, 1987). For example, mixed convective pipe flows become unstable even under mild
heating conditions at low Reynolds number (Scheele and Hanratty, 1962; Kemeny and Somers, 1962). These
instabilities occur mainly by thermal effects.

Linear stability theory addresses the first stage of the transition process, and it is used to find the location
of bifurcations as well as predict the form of the developing disturbances. However, it is inadequate to
describe the instabilities in some flows. For example, the plane Poiseuille flow becomes linearly unstable at
a Reynolds number of 5772, but the transition for this flow appears at much low Reynolds number in reality.
Similarly, the isothermal pipe flow undergoes transition at a Reynolds number O(2000), which is linearly
stable at all Reynolds numbers.

When stable or unstable disturbances reach appreciable amplitudes, then it becomes difficult to explain
the stability of the flow by linear theory. In general, the transition from smooth laminar to disorder turbulent
flow can involve a sequence of instabilities in which the system realizes progressively more complicated
states (Niemela et al., 2000) or it can occur suddenly (Grossmann, 2000; Hof et al., 2004). In the former
case, the complexity arises in well defined steps in the name of bifurcation sequences (super or subcritical).
In this situation, the mode that will be amplified can not be clear from the linear stability analysis because
any of the potential unstable waves may grow and interact with other modes. The prediction of wideband
nature of sequence of instabilities of the detailed flow pattern and temperature distribution at a point away

291-1



from the critical is beyond the scope of linear stability analysis. In this situation to understand the complexity
in the sequence of instabilities of the flow one can take the help of a weakly nonlinear stability analysis.

Recently, Khandelwal and Bera (2015) have investigated the detailed weakly nonlinear stability analysis
of mixed convective flow in a vertical channel for fluid as mercury, gases liquids and heavy oils, whose linear
stability analysis is already examined by Chen and Chung (1996). Their investigation is mainly concerned
with fluids as mercury and gases. They have studied the influence of nonlinear interaction of different
harmonics in terms of amplitude function on other physical aspects such equilibrium amplitude, heat transfer
rate, friction coefficient, wavespeed, energy spectrum and secondary flow pattern. They have also found the
transition phenomena in stably stratified flow is supercritical, which coincides with prediction by direct
numerical simulation (DNS) (Chen and Chung, 2003). The detailed instability mechanism of water is not
investigated in the above study. Therefore, in the present paper a step has been taken in this direction. The
analysis is carried out to determine the nature of the instability, amplitude behavior of unstable disturbance as
well as pattern variation. This analysis is centered around the derivation of the Landau equation to calculate
the nonlinear interaction of different harmonic waves.

2 Mathematical Formulation
A pressure-driven non-isothermal flow in a vertical channel of width 2L is shown in Fig 1. The wall tem-
perature of the channel is assumed to vary linearly with x as Tw = T0 +Cx, where C is a positive constant
and T0 is the upstream reference temperature. The gravitational force is aligned in the negative x-direction.
The thermo-physical properties of the fluid are assumed to be constant except for density dependence of the
buoyancy term in the momentum equation, which is satisfied by the Boussinesq approximation.

The non-dimensional space coordinates (x∗,y∗,z∗), dependent variables (V ∗,θ ∗,P∗) and time t∗ are cal-
culated after scaling the dimensional variables as follows:

(x∗,y∗,z∗) =
(x,y,z)

L
, V ∗ =

V
Uo

, θ =
(T −Tw)

CLPrRe
, P∗ =

P

ρUo
2 , t∗ =

tUo

L
, (1)

where, V ∗ = (u∗,v∗,w∗), θ , P∗ and t∗ are the dimensionless velocity vector, temperature, pressure and time
respectively. Furthermore, Uo and ρ are dimensional average base velocity and reference density of the fluid,
respectively. The nondimensional governing equations, after dropping asterisks, can be written as (Chen and
Chung, 1996)

∇ ·V = 0, (2)
∂V
∂ t

+V.∇V =−∇P+
Ra
Re

θex +
1

Re
∇

2V, (3)

∂θ

∂ t
+V.∇θ =

1
RePr

(∇2
θ −u). (4)

The nondimensional parameters appearing in the problem are the Rayleigh number (Ra), Reynolds number
(Re) and Prandtl number (Pr). They are defined as Ra = gβTCL4

ν̃k , Pr = ν̃

k and Re = UoL
ν̃

, where k, ν̃ , βT and g
are the thermal diffusivity, kinematic viscosity, thermal expansion coefficient and gravitational acceleration,
respectively. The notation ex in the equation (3) denotes unit vector in the x-direction.

2.1 Linear Stability Analysis
The basic flow, whose stability is to be analyzed, is steady, unidirectional and fully developed. Under these
assumptions the governing Eqs. (2) -(4) are reduced into the following set of equations:

291-2



w
0

T
  (

x)
 =

 T
  +

 C
x

z

y

x

w
0

T
  (

x)
 =

 T
  +

 C
x

Flow

g

y=−L y=L

Fig. 1: Schematic of the problem considered.

d2Uo

dy2 +RaΘo = Re
dPo

dx
, (5)

d2Θo

dy2 −Uo = 0. (6)

The solution of the basic flow Eqs. (5)-(6) admits the boundary conditions: Uo =Θo = 0 at y=±1, where
Uo, Θo and Po are the basic state velocity, basic state fluid temperature and basic state pressure, respectively.

To examine the linear stability of the above basic state, the dependent variables are split into normal
mode form (Drazin and Reid, 2004) as

V (x,y,z, t) =Uo(y)ex +V̂ (y)ei(αx+β z−αct), (7a)

θ(x,y,z, t) = Θo(y)+ θ̂(y)ei(αx+β z−αct), (7b)

p(x,y,z, t) = Po(x)+ p̂(y)ei(αx+β z−αct), (7c)

where hat denotes a small disturbance quantity, V̂ = (û, v̂, ŵ), α and β are the wavenumber in the x and z
directions respectively, and c = cr + ici is the complex wavespeed. The linearized disturbance equations can
be seen in the paper of Chen and Chung (1996).

Linear stability equations form a generalized eigenvalue problem for a complex disturbance wavespeed
(c). The disturbance is stable or neutrally stable or unstable as ci is negative or zero or positive, respectively.
The detailed analysis of linear stability characteristics of the above flow is examined by Chen and Chung
(1996). The objective of present study is to analyze the nonlinear stability analysis of the non-isothermal
Poiseuille flow, when fluid is water.

The overview of linear stability results provides some information regarding the development of the
disturbance. However, it can not provide any information about the amplitude of such disturbances and
quantitative information about a disturbed flow. Therefore, a nonlinear stability is required to study the
structure of the flow field that results from linear stability.

3 Weakly Nonlinear Analysis
The linear theory of hydrodynamic stability predicts only the onset of instability to infinitesimal amplitude.
When the larger amplitude are obtained the linear theory of stability is questionable. It does not provide
quantitative information about the actual size of the disturbances. The size of the disturbances may be finite
or not. The nonlinear effects modify the growth rate of disturbance predicted by linear theory. Therefore,
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nonlinear stability analysis is necessary to find the quantitative information about a disturbed flow, such as
amplitudes of the disturbances, growth and decay of the disturbances

To study the finite amplitude instability using weakly nonlinear theory, the dependent variables are first
separated into Fourier components of a disturbance wave predicated by linear instability theory. The equa-
tions governing the harmonic components are then solved using a perturbation expansion. The Fourier
expansion of the x-direction velocity in separable form is:

u(x,y,z, t) =U(y,τ)E0 + û1(y,τ)E1 + û2(y,τ)E2 + ...+ c.c. (8)

where, E = e[iα(x−crt)+iβ z], α is the wavenumber corresponding to the critical Ra and cr is the real part of
wavespeed of the most unstable disturbance wave. c.c. stands for complex conjugate. The inclusion of
higher order harmonics is not necessary to develop a cubic Landau equation.

The function for the harmonic components are further decomposed by expanding in terms of the small
parameter. Using the method of multiple timescales, the slow timescale τ = cit is given as

∂

∂ t
≡ ∂

∂ t
+ ci

∂

∂τ
. (9)

The following expansion of the E1 wave is consistent

û1(y,τ) = (ci)
1
2 Bu10 +(ci)

3
2 B|B|2u11 +O((ci)

5
2 ) (10)

where, B denotes the amplitude function of order one, which will be calculated from Landau equation. c.c.
stands for complex conjugate. The expansion of E1 wave leads to the following forms for E0 and E2 waves

U(y,τ) =Uo(y)+ ci|B(τ)|2U1(y)+O((ci)
2) (11)

û2(y,τ) = ciB2u20 +O((ci)
2) (12)

The system of harmonic equations are obtained by substituting Eqs. (8)-(12) into the governing equations
Eqs. (2)-(4). The different order harmonic equations can be solved sequentially in increasing power of ci.
The detail of system of harmonic equations and its solution procedure is given in the reference Khandelwal
and Bera (2015).

At order (ci)
3/2, the equations of harmonic E1 become non-homogeneous equations. The left hand side

of these equations contains linear stability operators operating on u11, v11, w11 and θ11, and right hand side of
these equations contains the terms proportional to dB/dτ , B and B|B|2. The coefficients of the terms on the
right-hand sides are known from the lower-order analysis. Since the homogeneous forms of the equations
of E1 are exactly same as linear stability theory, the integrability condition requires that the right-hand side
terms must be orthogonal to the functions satisfying the homogeneous adjoint problem. This leads to the
following cubic Landau equation for the disturbance amplitude function B:

dB
dτ

= αB+a1B|B|2, (13)

The constant a1 is known as the first Landau constant, and it is obtained through the integrability condition,
which is given in Khandelwal and Bera (2015). The subcritical or supercritical bifurcation (instability )
of the flow depends on the sign of the real part of a1. If the real part of a1 is positive (negative) then we
predict a subcritical (supercritical) type of bifurcation. The equilibrium amplitude (threshold amplitude) of
supercritical (subcritical) is Ae

2 =−αci/(a1)r(At
2 = |αci/(a1)r|), where (a1)r is the real part of the Landau

constant. The actual value of the Landau constant depends on the chosen normalization of eigenvectors
obtained from linear stability.

291-4



4 Results and Discussion
The finite amplitude instability of stably stratified non-isothermal Poiseuille flow in a vertical channel is
studied by means of weakly nonlinear stability theory. The governing parameters are Reynolds number
(Re), Prandtl number (Pr) and Rayleigh number (Ra). The influence of nonlinear interaction of different
harmonic modes on the flow instability is examined for fluid as water (Pr = 7). The Reynolds number is fixed
at 1000 for this study. Linear stability analysis (Chen and Chung, 1996) shows that the minimum critical
point is obtained for β = 0. Therefore, the present nonlinear stability analysis is also spanwise independent.
The critical Rayleigh number (Rac) and wavenumber (αc) for above set of parameter are 15.61 and 0.024
respectively. The numerical validation of the present study can be seen in the article (Khandelwal and Bera,
2015).
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Fig. 2: Variation of real part of Landau constant (a1)r and equilibrium amplitude (Ae)

The variation of real part of the Landau constant and equilibrium amplitude is plotted in Fig. 2. The
abscissa of the figure is normalized by δ = Ra/Rac− 1. As can be seen from above figure the value of
(a1)r is negative at and beyond the critical Ra, which leads a supercritical bifurcation corresponding to
the most unstable linear wave for linearly unstable flow. No regions of subcritical type of instability are
obtained for larger values of Rayleigh number in stably stratified flow with respect to most linearly unstable
wave. Chen and Chung (2003) have also mentioned that the flow transition phenomena of non-isothermal
Poiseuille flow in a vertical channel is always supercritical by direct numerical simulation, which is the
excellent support of the present study. Similar result for stably stratified Poiseuille flow is also obtained in
the pipe (Scheele and Hanratty, 1962) and annulus (Yao and Rogers, 1992). The equilibrium amplitude (Ae)
for supercritical bifurcation away from the critical point is also plotted in Fig. 2. The equilibrium amplitude
increases smoothly beyond the critical Ra (taken upto two times of critical). The increase in the equilibrium
amplitude of most unstable disturbance wave can be explained by the definition of Ae. A smooth increase in
Ae appears due to combined impact of αci and |(a1)r| for the entire range of Rayleigh number.

We have discussed about the type of bifurcation and variation of equilibrium amplitude of the most un-
stable disturbance beyond the critical point. Now we are curious to know the impact of nonlinear interaction
of different harmonics in terms of amplitude function on heat transfer rate as well as secondary flow pattern.

The evaluation of equilibrium disturbance amplitude is necessary to predict the heat transfer rate for
disturbed flow. The characteristics of the disturbed flow on Nusselt number (Nu) is examined in Fig. 3. The
average rate of heat transfer is given as
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Fig. 3: Variation of Nusselt number as function of Rayleigh number. Nubs: Nusselt number of basic state, Nuds:
Nusselt numbers of distorted flow by nonlinear analysis

Nu =−2
∂Θ

∂y
|y=1

/∫ 1
−1UΘdy∫ 1
−1Udy

. (14)

In Fig. 3 Nuds is calculated with the help of equilibrium amplitude. The functions U and Θ for Nuds are given
by Uo +A2

eU1 and Θo +A2
eΘ1, respectively. The results of this calculation for Ra > 0 at critical wavenumber

(α) are given by the single wave result. The results show that the Nusselt number for distorted flow is much
more compared to the Nusselt number predicted by the basic state. Quantitatively, we have found that the
increase in Nu due to nonlinear interaction is 10% at δ = 0.5 and 18% at δ = 1. This indicates that the
nonlinear interaction of different modes causes a substantial increase of Nusselt number. This demonstrates
that heat transfer correlation obtained analytically by use of parallel flow assumption is inadequate in mixed
convection. The increase in heat transfer rate due to instability was also observed for Pr = 6 experimentally
by Maitra and Subba Raju (1975), and theoretically by Yao and Rogers (1992) while studying non-isothermal
flow in a vertical annulus. We know that in this flow a large waveband will become unstable at nearly the
same time. Therefore, as Ra increases all of these unstable waves must be included in the model to unsteady
flow pattern. Consequently, it will induce transverse mixing of the fluid, and enhance the heat transfer rate.

To shed more light on the mechanism of supercritical/subcritical bifurcation, an investigation of the
energy transfer due to change of shape of the fundamental disturbance wave on the secondary flow pattern
is made. We have studied the pattern of secondary flow within one period under linear as well as nonlinear
stability theories.

Figure 4 is plotted to analyze the supercritical bifurcation in terms of pattern variation of the secondary
flow of disturbed velocity and temperature component within one period for δ = 0.5 (or Ra = 23.41). These
figures are plotted at the corresponding most unstable linear wave. The solid and dashed lines in contours
are associated with respective positive and negative values of the field variable, and defined as even and
odd cells, respectively. The contour plots for disturbance velocity components and disturbance temperature
((i)−(iii)) by linear stability analysis at δ = 0.5 are shown in Fig. 4(a), whereas Fig. 4(b) shows the same by
nonlinear stability analysis. The supercritical bifurcation due to the interaction of different harmonic modes
stretches the cells of velocity and temperature disturbance components towards the walls of the channel. So,
the nonlinear interaction distorts the fundamental wave. Apart from this the clockwise and anti-clockwise
cells are shifted from their respective places in the same period due to the interaction of superimposed
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Fig. 4: Pattern of secondary flow by linear stability (a) and by nonlinear stability (b) at δ = 0.5: (i) disturbed u-velocity,
(ii) disturbed v-velocity and (iii) disturbed temperature.
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Fig. 5: Pattern of E2 component in the secondary flow at δ = 0.5; (i) disturbed u-velocity, (ii) disturbed v-velocity and
(iii) disturbed temperature.

harmonic modes. Since our analysis is restricted upto E2 harmonic mode and the pattern of secondary flow
due to fundamental mode (E1) is similar to the pattern of secondary flow by linear stability. Therefore, the
stretching of cells appears due to interaction of E2 harmonic mode. Figure 5 is plotted for E2 harmonic mode
at δ = 0.5. As can be seen from the above figures, compared to secondary flow due to (E1) the same for
E2 contains many small even and odd cells. The magnitude of these cells are very small compared to the
same for E1. The number of cells and magnitude of u-velocity component is much more than the same for
v-component. Since buoyancy acts in the direction of u-component velocity only, therefore modification in
the buoyant production acts as a key role on the pattern of the u-component velocity as well as temperature.

5 Conclusions
In this work, a weakly nonlinear stability of non-isothermal Poiseuille flow in a vertical channel is examined,
whose linear stability is performed by Chen and Chung (1996). The results are presented for fluid as water
and Re = 1000. The calculation of the first Landau constant shows supercritical bifurcation at and beyond
the bifurcation point (critical point), in agreement with direct numerical simulation result (Chen and Chung,
2003). The equilibrium amplitude in this flow increases beyond the bifurcation point. The impact of nonlin-
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ear interaction on heat transfer rate significant, i.e. Nusselt number predicted by nonlinear analysis is much
more than those predicted by fully developed basic state. The nonlinear impact is also examined in terms
of pattern of secondary flow. The interaction of different harmonic modes stretches the cells of velocity and
temperature disturbance components, i.e. it distorts the fundamental wave.
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