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Abstract -Miscible non-isothermal flow displacements in homogeneous porous media are modeled and analyzed in 

flows that involve step-profile velocities that alternate between injection and extraction. The viscosity is assumed to 

vary with both the concentration and the temperature. The flow is governed by the continuity equation, Darcy's law 

and the convection-diffusion equations for the concentration and temperature with the assumption of thermal 

equilibrium. The problem is formulated and solved numerically using a combination of the highly accurate spectral-

methods based on the Hartley’s transform and the finite-difference technique.  Non-linear simulations were carried 

for a variety of parameters to analyse the effects of the time-dependence of the injection velocity on both the solutal 

and the thermal front. It is found that for the same net flow rate, time-dependent injections affect not only the solutal 

front but also the thermal from which can become unstable under time-dependent scenarios when it is known to be 

stable for flows with a constant injection velocity. The results of this study will be used to improve our 

understanding of the coupling between heat and mass transfer in flows in porous media and to optimize a variety of 

non-isothermal flow displacements. 
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1. Introduction 
 Instability at the interface between flowing solutions in a porous medium may takes place as a result 

of viscosities and/or densities mismatch between the fluids. This instability develops in the form of 

intruding fingers and is referred to as viscous fingering or Saffman-Taylor instability in case of viscosities 

mismatch, and as density fingering or Rayleigh-Taylor instability in the case of densities mismatch 

between the fluids. Extensive reviews of such flows have been presented by Homsy (1987) and McCloud 

and Maher (1995). These fingering phenomena occur in enhanced oil recovery, fixed bed regeneration, 

groundwater flows, CO2 sequestration, and soil remediation and filtration, etc. (Hejazi and Azaiez, 2010). 

In most cases, viscous fingering is undesirable since it reduces the sweep efficiency, while in others it can 

be actually desirable as it promotes mixing.  
 To date, most of the existing studies dealing with this type of instability have been limited to 

isothermal flows with constant injection velocities. However, in a number of practical applications the 

displacement velocity is time dependent and involves heat transfer. Examples of such applications include 

a number of enhanced oil recovery (EOR) processes such as the cyclic steam stimulation (CSS) that 

involves three stages of injection, soaking and production (Mago et al., 2005) as well as the CO2 huff-and-

puff technique that involves cyclic injection of liquid CO2 for heavy as well as light oil enhanced recovery 

(Monger et al., 1991). The success of these processes which can be run as either miscible or immiscible 
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depends on the importance and duration of each stage of the cycle in conjunction with the efficiency of 

heat exchange between the different components. 
 Recently, Dias et al., (2010a; 2010b; 2012) investigated the possibility of attenuating the fingering 

instability for immiscible flows in a radial geometry using time-dependent flow rates. They reported the 

optimal flow rates for linear flow regime and nonlinear flow regime. More recently Yuan and Azaiez 

(2014, a-b) examined the effects of step-size dependent flows on the efficiency and stability of reactive 

displacements in porous media. The authors showed that it is possible to control the amount of chemical 

product through a judicious choice of the nature and cycle of the time-dependent displacement. However 

all the studies examining time-dependent injections have so far been limited to isothermal flows. There are 

on the other hand a number of studies that have analyzed non-isothermal displacements but under constant 

injection velocities. These include the studies by Pritchard (2009), Mishra et al. (2010), Islam and Azaiez 

(2010) and Sajjadi and Azaiez (2013, a-b).   
 The present study deals with non-isothermal miscible displacements in rectilinear Hele-Shaw cells 

under sinusoidal flow velocities. The objective of the study is to determine the effects of the frequency, 

amplitude and phase of the velocity on the hydrodynamic instability and to characterize these effects both 

qualitatively through concentration contours and quantitatively through the sweep efficiency. The 

objective is to propose guidelines for the choice of the frequency, amplitude and phase that allow one to 

control the flow towards either enhancing or attenuating the instability. 
 

2. Flow Configuration and Mathematical Model 
 A two-dimensional non-isothermal displacement in which both fluids are incompressible, non-

reactive and fully miscible is considered. The flow takes place in the horizontal direction in a 

homogeneous medium of constant porosity  and permeability k.  

 

 
Fig. 1. Schematic of rectilinear Hele-Shaw cell/two-dimensional porous medium. 

 A fluid (Phase I) of viscosity 
1  and uniform temperature 

1T  is injected with a time-dependent 

velocity U(t) to displace a second one (Phase II) of viscosity 
2  and uniform temperature 

2T . Here, the 

direction of the flow is along the x axis and the y axis is parallel to the initial plane of the interface (Figure 

1). The length, width and thickness of the medium are denoted by L, W and e respectively. The 

mathematical model describing the non-isothermal miscible displacement flow involves the conservation 

of mass and momentum and mass-energy balance equations:  

 

0.  v  (1) 
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 In the above equations, v=(u,v) while  and 
2 stand for the gradient and Laplacian operators in the 

(x,y) plane. Furthermore, p represents the pressure,  the viscosity, k the medium permeability and   its 

porosity. The concentration of the solvent (displacing fluid) is denoted by C while the temperature of the 

solid-fluid system which is assumed to be in local thermal equilibrium is T. The corresponding mass and 

thermal diffusion coefficients are referred to by DC and DT, respectively. The above equations model the 

propagation of two fronts, one associated with temperature and will be referred to as the thermal front 

while the other corresponds to mass transport and will be called the solutal front. The parameter   that 

we shall refer to as the thermal lag coefficient can be interpreted as the ratio of the speed of the thermal 

front to that of the solutal front (Bejan and Nield, 2006, Pritchard, 2009, Islam and Azaiez 2010):  
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 In the above equation, 
s , 

sCp , 
f , and 

fCp  are the density and heat capacities of the solid phase 

and the fluid phase respectively. Note that 1  with higher values corresponding to smaller difference 

between the velocities of concentration and temperature fronts and lower values corresponding to higher 

rates of dissipation of heat. Throughout this study we will assume that the changes in the fluid density and 

heat capacity are sufficiently small such that can be considered constant.  

 The governing equations are made dimensionless as in Islam and Azaiez (2005) and Yuan and Azaiez 

2014, and are expressed in a Lagrangian reference frame moving with the dimensionless displacement 

velocity uf(t). This results in the following dimensionless equations (using the same notation as for 

dimensional quantities): 
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 In the above equations TCCT PePeDDLe   is the Lewis number where PeC and PeT are the 

solutal and thermal Péclet numbers, respectively. Two additional dimensionless groups are also involved, 

namely the Péclet number 
C

DULPe  and the cell aspect-ratio HLA  that appear in the boundary 

conditions (Sajjadi and Azaiez 2013).  To complete the model, a form for the dependence of the viscosity 

on concentration and temperature must be specified. Following Pritchard (2009), Islam and Azaiez (2010) 

and Sajjadi and Azaiez (2013), exponential dependence is adopted: 
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𝜇(𝐶, 𝜃) = exp⁡[𝛽𝐶(1 − 𝑐) + 𝛽𝑇(1 − 𝜃)] (10) 

 

 In this equation c is the natural logarithm of the viscosity ratio 1/2 in an isothermal miscible 

displacement and T is the natural logarithm of the ratio of the viscosity 1T/2T in a single fluid flow with 

two different temperatures at the inlet and outlet boundaries.  

 

3. Numerical Procedure 
 The equations are expressed using a stream-function vorticity formulation, where the velocity field, 

the stream-function   and the vorticity w  (Hejazi and Azaiez 2013, Yuan and Azaiez 2014, a-b).  With 

this formulation, the continuity equation is satisfied automatically and the governing equations take the 

forms: 
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 The partial differential and algebraic equations are solved using a highly accurate pseudo-spectral 

method based on the Hartley transform in conjunction with a semi-implicit predictor-corrector time-

stepping method along with an operator-splitting algorithm (Islam and Azaiez 2005). 

 The code was validated by comparing the concentration contours for constant velocity under 

isothermal with the study by Islam and Azaiez (2005) and for non-isothermal displacements with the 

results of Islam and Azaiez (2010) and Sajjadi and Azaiez (2013b). Furthermore, the convergence of the 

numerical solution was examined by considering cases with different spatial resolutions varying from 

128x128 to 512x512 while varying the time step accordingly. Since a resolution of 256x256 resulted in 

finger structures similar to those obtained with larger number of grid points, it was adopted in all 

subsequent simulations.  

 

4. Results 
 In this section, the flow dynamics will be analyzed in the case of are solved numerically in the case of 

step-size time dependent injection velocity profiles 𝑢𝑓(𝑡)⁡with a period 𝑇. Such types of velocity profiles 

correspond to many practical applications where the displacing fluid is injected and produced (or 

soaked) at constant velocities in a certain period of time, or vice versa. Each cycle consists of two stages. 

The first with a constant velocity (𝑢𝑓(𝑡) = 𝑢1) lasts a time (𝑡1) and is followed by the second stage where 

the velocity switches to a new value (𝑢𝑓(𝑡) = 𝑢2) and lasts a time (𝑡2 = 𝑇 − 𝑡1). The objective is to 

compare the results with those of a constant injection velocity (𝑢 = 1), which requires the average 

velocity over a period to be also equal to one (𝑢𝑓(𝑡)̅̅ ̅̅ ̅̅ ̅ = 1). This implies that the net injected flow in both 

the time-dependent and constant velocity displacements is the same. This requires that 

𝑡1 = (𝑢𝑓(𝑡)̅̅ ̅̅ ̅̅ ̅ − 𝑢2)𝑇 (𝑢1 − 𝑢2) = (1 − 𝑢2)𝑇 (𝑢1 − 𝑢2)⁄⁄ .  
 Hence, the time-dependent displacement is fully characterized by both 𝑢1, 𝑢2 and the cycle period 𝑇. 

It should be also mentioned that in cases where the displacement velocity changes sign and the process 

switches from injection (positive velocity) to extraction (negative velocity) or vice versa, zones with 
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positive mobility ratios will change from unstable to stable state, or vice versa. This is also true for zones 

with negative mobility ratios. However for consistency, the zones will be referred to as stable or unstable 

based on the flow displacement of the constant injection velocity. 
 In all that follows, the following parameters are fixed as A=2 and Pe=500, Le=1, and  =0.75. For 

brevity and illustration purposes, the time sequences will not be always presented necessarily at the same 

time intervals, and only the frames that reveal new and interesting finger structures that help in the 

discussion, are shown. In all contours, the red and blue colour fields correspond to the displacing and 

displaced fluid, respectively.  
 
4. 1. Non-Isothermal Flows with Constant Injection Velocity 
 In this section, different scenarios of non-isothermal displacements with unit injection velocity are 

presented. Figure 2 shows the concentration contours for four different scenarios that correspond to 

positive or negative values of the mobility ratios. In the case of a flow where a viscous cold fluid displaces 

a less viscous hot one (𝛽𝑐 = −3, 𝛽𝑇 = −3), the interface is stable. This is expected since in this case both 

the solutal and thermal fronts are under favourable displacement conditions. The interface diffuses with 

time but no fingers develop (Fig2-a). When the thermal front is unstable while the solutal lone is stable 

(𝛽𝑐 = −3, 𝛽𝑇 = 3),⁡instabilities grow on the thermal front and due to the coupling, this results in rather 

diffuse instabilities that are observed in the concentration contours of Fig2-b at late times. As discussed by 

Islam and Azaiez (2010) and Sajjadi and Azaiez (2013b), this coupling is stronger for larger values of the 

lag coefficient .  

 

    

    

    

    

     (a)      (b)          (c)       (d) 
Fig. 2. Concentration profiles for constant injection velocity at different times for (a) 𝛽𝑐 = −3, 𝛽𝑇 = −3,⁡(b)  

𝛽𝑐 = −3, 𝛽𝑇 = 3, (c) 𝛽𝑐 = 3, 𝛽𝑇 = −3, (d) 𝛽𝑐 = 3, 𝛽𝑇 = 3.⁡ 
  

 Figure2-c and Figure2-d depict the results where the solutal viscosity is unfavourable (𝛽𝑐 = 3 > 0) 

and the thermal one is either favourable (𝛽𝑇 = −3) or unfavourable (𝛽𝑇 = 3), respectively. In these cases, 

fingers develop rapidly resulting in a rapid breakthrough, notably in the case where both the solutal and 

thermal fronts are unstable (Fig2-d). It must also be noted that the number of fingers are larger and their 

structures are more complex in this last case.  
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4. 2. Non-Isothermal Flows with Time-Dependent Injection Velocity 
 The development of the flow is now analysed in the case of a step-size time-dependent flow 

displacement. The analysis will focus on a scenario where the displacement is initiated by an injection 

followed by extraction (𝑢1 = 3, 𝑢2 = −1). It will also be limited to the case of a less viscous cold fluid 

displacing a more viscous one (𝛽𝑐 = 3, 𝛽𝑇 = −3). As discussed in the previous section, the flow leads to 

an unstable solutal front but the growth of the fingers is mitigated by the stable thermal front. Fig.3 show 

the concentration contours for a constant injection velocity (𝑢 = 1), and two time-dependent flows 

(𝑢1 = 3, 𝑢2 = −1) with a period 𝑇 = 200⁡(case1) and 𝑇 = 400 (case2).  
 

      

      

      

      

            

          
 (a)     (b)     (c)     

Fig. 3. Concentration profiles for constant and time-dependent injection velocities at different times and for different 

periods. 𝛽𝑐 = 3, 𝛽𝑇 = −3, 𝑢1 = 3, 𝑢2 = −1. (a) Constant velocity, (b) 𝑇 = 200, (c) 𝑇 = 400. 

  

 It is clear that in the early stages of the displacement, the time-dependent flows are more unstable 

than their constant injection velocity counterpart. Fingers are well developed by t=50 while none have 

developed in the case of the constant unit velocity. Moreover, up to a time corresponding to half a period 

of case1, the structures are identical for both time-dependent injection flows. This is not surprising since 

up to that time the velocity is the same for both cases. Past this time, the flow in case1 moves to an 

extraction mode where the flow reverses and as a consequence the displacement becomes favourable. This 

flow reversal is responsible for an attenuation of the instability and the interface becomes diffuse with no 
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sharp fingers. At the same time, case2 is still in the injection mode and the fingers are able to develop and 

extend further in the flow. The situation is reversed past the half-period of case2, where the flow now 

shifts to extraction and the fingers are strongly damped in case2 while they are reinvigorated in case1. 

Actually, as the long stage of extraction, case2 ends up with a very wide diffused interface that 

subsequently is not propitious for the growth of strong fingers. In this flow scenario, case1 ends up being 

the most unstable displacement and results in the earliest breakthrough time, while case2 is the least 

unstable one and exhibits an interface that is less unstable than that of the constant injection flow.  

 

      

      

        

      

       

        
 (a)     (b)     (c)     

Fig. 4. Temperature profiles for constant and time-dependent injection velocities at different times and for different 

periods. 𝛽𝑐 = 3, 𝛽𝑇 = −3, 𝑢1 = 3, 𝑢2 = −1. (a) Constant velocity, (b) 𝑇 = 200, (c) 𝑇 = 400. 

 

 The effects of the time-dependent flow on the corresponding thermal front are depicted in Figure 4. It 

is clear that in the constant injection flow, the thermal front is basically stable and the small wavy 

interface is attributed to the coupling with the solutal front. This coupling is however short and the fronts 

separate as the thermal front recedes due to heat losses to the porous medium while the solutal front 

advances with strong fingers. This changes when the injection velocity is time-dependent and the coupling 

is now stronger and more lasting leading to shaper and more developed thermos-fingers. This is due to 

two factors. The first one is a natural result of the more unstable solutal front that is able to grow at the 

early stages of the displacement when the two fronts are still close. This allows the thermal front to 
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develop instabilities (see Fig.4b-c at t=50 and t=100) when that of the constant injection is still stable. 

Even though these thermos-fingers are not well developed they become the precursors of the fingers that 

develop later even when the flow reverses into an extraction. The second factor is associated with the 

initial stronger injection velocity (𝑢1 = 3) that delays the effects of heat diffusion into the porous medium 

and help maintain a sharper thermal front where fingers can grow easier. It is interesting that in spite of 

the flow reversal, the thermos fingers were able to maintain their growth and were not supressed even at 

late times. 

 

5. Conclusion 
 In this study, the effects of time-dependent step-profile injection velocities on the development of 

fingering instabilities in homogeneous porous media were examined. The analysis focuses on non-

isothermal miscible displacements where both heat and mas are transported by the flow. The development 

and progress of the instabilities are illustrated through iso-surfaces of both the concentration and the 

temperature of the fluids. The dynamics of the flow were analysed for an injection-extraction process and 

compared with those arising from a constant injection velocity that results in the same average flow rate. It 

is found that the time-dependent velocity affects the hydrodynamic instability and in particular it has an 

important impact on the thermal front due to the coupling between the solutal and the thermal fronts. The 

results of the study will be a cornerstone for understanding and optimizing processes that involve time-

dependent injections of hot/cold fluids in porous media.   
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