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Abstract -The unsteady two-dimensional stagnation point flow of second-grade fluid impinging on an infinite plate 

is examined and solutions are obtained. It is assumed that the infinite plate at 𝑦 = 0 is making harmonic oscillations 

in its own plane. Solutions for small and large frequencies of the oscillations are obtained for various values of the 

Weissenberg number. The effect of the Weissenberg number is to decrease the velocity near the wall as it increases. 
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1. Introduction 
 In the past, the fluid flow near a stagnation-point has been investigated extensively. In his pioneer 

work, Hiemenz (1911) derived an exact solution of the steady flow of a Newtonian fluid impinging 

orthogonally on an infinite flat plate. The stagnation-point flow when the fluid impinges obliquely on the 

plate has been studied independently by Stuart (1959), Tamada (1979) and Dorrepaal (1986). Beard and 

Walters (1964) used boundary-layer equations to study two-dimensional flow near a stagnation point of a 

non-Newtonian viscoelastic fluid. The behaviour of a viscoelastic fluid impinging on a flat rigid wall at 

an arbitrary angle of incidence was analyzed by Dorrepaal et al (1992). 

 The unsteady stagnation-point flow of a Newtonian fluid has also been studied extensively. Rott 

(1956) and Glauert (1956) studied the stagnation point flow of a Newtonian fluid when the plate performs 

harmonic oscillations in its own plane. Matunobu (1977) examined the fundamental character of the 

unsteady flow near a stagnation point for a Newtonian fluid. Takemitsu and Matunobu (1979) studied the 

oblique stagnation point flow for a Newtonian fluid and obtained the general features of a periodic 

stagnation point flow. The case when the stagnation point fluctuates along a solid boundary is especially 

interesting from the biomechanical point of view. This is because the wall shear stress experienced by 

blood vessels may be thought to be increased by pulsating blood flow near the mean position of 

fluctuating stagnation point and lead to vascular diseases. 

 In this work, the unsteady stagnation point flow of a viscoelastic second-grade fluid is examined and 

solutions are obtained. We assume that the infinite plate at 𝑦 = 0 is oscillating with velocity 𝑈 cos Ω𝑡, the 

fluid occupies the entire upper half plane 𝑦 > 0 and the fluid impinges obliquely on the plate. The 

governing partial differential equations are reduced to a system of ordinary differential equations by 

assuming a form of the streamfunction a priori. The resulting equations are, then, solved numerically 

using a shooting method for various values of the Weissenberg number, 𝑊𝑒. It is observed that the effect 

of the Weissenberg number is to decrease the velocity near the wall as it increases. Furthermore, 

analytical solutions are obtained for small and large values of frequency. 

  

2. Flow Equations and Solutions 
 The two-dimensional flow of a viscous incompressible non-Newtonian second-grade fluid, 

neglecting thermal effects and body forces, is governed by  
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normal stress moduli. Having obtained a solution of equation (1), the velocity components are given by 
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 The shear stress component 12  is given by 
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 Following  Takemitsu and Matunobu (1979), we assume that 

 

 ( ) ( , )k x f y g y t                      (4) 

 
 We assume that the infinite plate at 𝑦 = 0 is oscillating with velocity 𝑈𝑐𝑜𝑠 Ω𝑡 and that the fluid occupies the 

entire upper half plane 𝑦 > 0. Furthermore, we assume the streamfunction far from the wall is given by 𝜓 =
1

2
 𝛾𝑦2 + 𝑥𝑦. Thus, the boundary conditions are given by 
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 where 𝛾 is a non-dimensional constant characterizing the obliqueness of oncoming flow. It is 

assumed that only the real part of a complex quantity has its physical meaning. 

 Substituting equation (4) in (1) and upon integration with respect to 𝑦 yields after employing the 

conditions at infinity. 
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 Using the non-dimensional variables  
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 in equations (7) and (8), and boundary conditions (5) and (6), we obtain 
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                                       𝐺(0, 𝜏) = 0,    𝐺𝜂(0, 𝜏) = 𝜀𝑒𝑖𝜏,   𝐺𝜂𝜂(∞, 𝜏) = 𝛾   

 

 where 𝑊𝑒 is the Weissenberg number. 

 Using the quasi-linearization technique described by Garg and Rajagopal (1990), we find that 

𝐹′′(0) = 1.23259 when 𝑊𝑒 = 0 which is in good agreement with the value obtained by Takemitsu and 

Matunobu (1979). Numerical values of 𝐹′′(0)  for different values of 𝑊𝑒 are shown in Table 1. These 

values are in good agreement with the values obtained by Garg and Rajagopal (1990). Figure 1 shows the 

profiles of 𝐹′ for various values of 𝑊𝑒. We observed that as the elasticity of the fluid increases, the 

velocity near the wall decreases.  

 

 Letting 𝐺(𝜂, 𝜏) = 𝐺0(𝜂) + 𝜖𝐺1(𝜂)𝑒𝑖𝜏 and 𝐺0
′ (𝜂) = 𝛾𝐻0(𝜂), then system (11) gives 

 

𝐻0
′′ + 𝐹𝐻0

′ − 𝐹′𝐻0 − 𝑊𝑒(𝐹𝐻0
′′′ − 𝐹′𝐻0

′′ + 𝐹′′𝐻0
′ − 𝐹′′′𝐻0) = 0 (12) 

 

𝐻0(0) = 0,      𝐻0
′ (∞) = 1 (13) 

 

 and  

 

𝐺1
′′′ + 𝐹𝐺1

′′ − 𝐹′𝐺′1 − 𝑊𝑒 (𝐹𝐺1
(𝑖𝑣)

− 𝐹′𝐺1
′′′ + 𝐹′′𝐺1

′′ − 𝐹′′′𝐺1
′) − 𝑖𝛽(𝐺1

′ − 𝑊𝑒 𝐺1
′′′) = 0 (14)  

                                 

𝐺1(0) = 0,      𝐺1
′(0) = 1,      𝐺1

′(∞) = 0 (15) 

 
 System (12)-(13) is solved numerically using a shooting method and it is found that for 𝑊𝑒 = 0, 

𝐻0
′ (0) = 0.607965.  Since 𝐺0

′′(0) = 𝛾𝐻0
′ (0), then for 𝑊𝑒 = 0, 𝐺0

′′(0) = 0.607965 𝛾 which is in good 

agreement with the value obtained by Takemitsu and Matunobu (1979). Numerical values of 𝐻0
′ (0) for 

different values of 𝑊𝑒 are shown in Table 1. Figure 2 depicts the profiles of 𝐻0
′  for various values of 𝑊𝑒. 

 
 Letting 𝜙(𝜂) = 𝐺1

′(𝜂), then system (14)-(15) becomes 

 

𝜙′′ + 𝐹𝜙′ − 𝐹′𝜙 − 𝑊𝑒(𝐹𝜙′′′ − 𝐹′𝜙′′ + 𝐹′′𝜙′ − 𝐹′′′𝜙) − 𝑖𝛽(𝜙 − 𝑊𝑒 𝜙′′) = 0 (16) 

 

𝜙(0) = 1,      𝜙(∞) = 0 (17) 
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 For small values of the frequency  𝛽, we assume that  

 

𝜙(𝜂) = 𝜙0 (𝜂) + 𝑖𝛽 𝜙1(𝜂) + (𝑖𝛽)2𝜙2(𝜂) + ⋯ (18) 

 
 where the numerical values for 𝜙0

′ (0), 𝜙1
′ (0) and 𝜙2

′ (0) are given in Table 1 for different values of 

𝑊𝑒. 

 For large values of the frequency  𝛽, we let 𝑌 = 𝛼𝜂, 𝛼 = √𝑖𝛽 and we found that  

 

𝜙′(0)   =  𝜙₀′(0) + 𝛼𝜙₁′(0) + 𝛼²𝜙₂′(0) + 𝛼³𝜙₃′(0)+. .. (19) 

 

=  −
1

√1+𝑚
−

(3−4𝑚)

8(1+𝑚)
𝐹′′(0) 𝛼3 +

3+4𝑚

16√1+𝑚
𝛼⁴ (20) 

 

−
(40𝑚3−50𝑚2+28𝑚−33)𝐹′′2(0)

128(1+𝑚)√1+𝑚
 𝛼6 + ⋯ (21) 

 

 provided 1m  . 

 

3. Conclusions 
 The unsteady second grade stagnation-point flow impinging obliquely on an oscillatory flat plate is 

studied. Numerical results for this flow are found for various values of the Weissenberg number 𝑊𝑒. 

Figure 1 shows the variations of 𝐹′(𝜂) for various values of 𝑊𝑒. The effect of the Weissenberg number, 

𝑊𝑒, is to decrease the velocity 𝐹′(𝜂) near the wall as it increases. Figure 2 depicts the variations of 𝐻0
′ (𝜂) 

for various values of 𝑊𝑒 and shows that 𝐻0
′ (𝜂) decreases near the wall as 𝑊𝑒 is increasing.  

 

 
Fig. 1. Variations of 𝐹′(𝜂) for various values of 𝑊𝑒. 

 



 

313-5 

Table. 1. Numerical values of 𝐹′′(0), 𝐻0
′ (0), 𝜙0

′ (0), 𝜙1
′ (0) and 𝜙2

′ (0) for different values of 𝑊𝑒. 

 

        

   𝑊𝑒 

 

𝐹′′(0) 
 

  

𝐻0
′ (0) 

 

𝜙0
′ (0) 

 

𝜙1
′ (0) 

 

𝜙2
′ (0) 

   

0.0 

 

1.23259 

 

0.60777 

 

-0.81107 

 

-0.49348 

 

0.09471 

   

0.5 

 

0.90248 

 

0.39774 

 

-0.65619 

 

0.51922 

 

-0.05474 

   

1.0 

 

0.75276 

 

0.30691 

 

-0.57522 

 

0.51155 

 

-0.15428 

   

2.0 

 

0.59677 

 

0.21662 

 

-0.48170 

 

0.48461 

 

-0.27270 

   

10 

 

0.30283 

 

0.07127 

 

-0.27371 

 

0.34885 

 

-0.38807 

 

 
Fig. 2. Variations of 𝐻0

′ (𝜂) for various values of 𝑊𝑒. 
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