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Abstract -With the continuing miniaturization of technology happening a rapid pace, more and more compressible 

flows are occurring at the microscale. At the small length scales encountered in such microflows, the standard 

assumption of shockwaves having infinitesimal thickness may no longer apply. In this paper we therefore suggest 

the existence of “shock-plugs,” standing normal shocks with finite thickness. We model shock-plugs using the same 

methods and assumptions as seen in standard normal shockwave analysis. The inclusion of shock thickness 

necessitates the inclusion of additional parameters in the analysis, however, namely differing upstream and 

downstream cross sectional areas, as well the pressure on the sidewalls adjacent to the shock. Predictions for 

changes in Mach number, temperature, pressure, and entropy are presented, all of which show deviation from 

conventional shockwave analysis. The models presented here may provide better estimates of shock properties in 

microscale applications.  
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1. Introduction 
 In the quasi-one-dimensional flow of a compressible fluid in a converging/diverging nozzle, the fluid 

can be accelerated from subsonic flow in the converging section to supersonic flow in the diverging 

section if a suitably low back pressure exists. For isentropic flow, one unique value of back pressure will 

produce a constantly accelerated flow throughout the channel such that the value of back pressure exactly 

matches the pressure at the exit as required by isentropic conditions. For back pressures larger than this, 

however, isentropic flow cannot be maintained throughout, and a normal shockwave forms in the 

diverging section. (Fig. 1.) The upstream and downstream isentropic flows are effectively pieced together 

via the shockwave. (Moran and Shapiro, 2008) 

 Modelling of shockwaves is well developed and relies on the application of continuity, linear 

momentum conservation, and energy conservation across an infinitesimally thin control volume. The 

presence of the shockwave rapidly decelerates the flow from supersonic to subsonic conditions, causing a 

discontinuous increase in pressure accompanied by a large generation of entropy. Good treatments can be 

found in Anderson (1990) and NACA (1953). 

 The simple relations that result from the standard analysis of normal shockwaves hinge on the 

assumption of their infinitesimal size. Anderson (1990) notes that the actual size of shocks is on the order 

of several mean free paths of the fluid molecules, making the negligible thickness assumption a more than 

plausible assumption in the vast majority of applications. Granger (1995) gives a quantitative analysis on 

the size of shockwaves, the basis for which is the balance between viscous shear stress fluid deceleration. 

The resulting shockwave thickness given by 
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Fig. 1. A converging/diverging nozzle. For sufficiently low back pressures, supersonic conditions can exist in the 

diverging portion. For a certain range of back pressures, shockwaves form, across which the flow decelerates from 

supersonic to subsonic speeds. 

 

 where ν is kinematic viscosity, and Cx and Max are the speed of sound and Mach number upstream of 

the shock, respectively. For air at ambient conditions, this gives values of tshock on the order of 30 nm, well 

within reason for assuming zero shockwave thickness. 

 Compressible flow in microfluidic applications, such as shock tubes within microchannels (Iancu and 

Müller, 2005; Zeitoun et al, 2009; Dodulad et al, 2010) and the design of micronozzles (Louisos et al, 

2008), however, involve length scales in which shockwave thickness may potentially be of interest. 

Specifically, in the case a converging/diverging micronozzle, a finite shockwave thickness may result in 

non-negligible differences in cross sectional flow areas upstream and downstream of the shock itself, a 

situation in which standard relations would no longer apply. To the authors’ knowledge no analysis 

currently exists in which shock relations take shock thickness into account. A first order analysis of such 

hypothesized finite-sized standing shocks, hereafter referred to as “shock-plugs,” forms the basis of this 

paper. 
 

2. Model Derivation 
 Figure 2 gives a diagram of a standard standing normal shockwave next to the hypothesized shock-

plug. In both cases the shock would appear in the diverging section of a converging/diverging nozzle, 

with supersonic conditions upstream of the shock and subsonic conditions downstream. Variables 

describing conditions upstream are denoted with x-subscripts, whereas downstream parameters utilize y-

subscripts. 

 The application of continuity, conservation of linear momentum, and conservation of energy to the 

shockwave in Fig. 2 (a), along with the assumption of a perfect ideal gas, results in the well-known 

normal shock relations. In these relations, the upstream supersonic Mach number Max completely 

determines the downstream subsonic Mach number May, as well as the corresponding increases in 

temperature, pressure, and density across the shock. Key to the shock functions’ dependence only on Max 

is the shockwave’s assumed thinness, which necessarily implies the upstream and downstream flow areas 

be the same.  

 The shock-plug shown in Fig. 2 (b), however, is characterized by some thickness, tshock, resulting in 

the cross sectional area increasing in the flow direction. Also seen in Fig. 2 (b) is the presence of a 

pressure on the sidewalls of the nozzle, pside, which contributes to the flow direction linear momentum 

differently than in a shockwave. For the analysis here, the ratio of areas is given the symbol r: 
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r = Ax/Ay. (2) 

 

 
(a)          (b) 

Fig. 2. Schematic diagrams showing relevant parameters for (a) a shockwave and (b) a shock-plug  

 

 The average pressure on the sidewalls is assumed to take on some value between px and py as given 

by 

 

pside = px + ϕ (py - px), (3) 

 

 where 0 < ϕ < 1. The presence of the additional parameters r and ϕ complicates the relations for 

shock-plugs. 

 As a first order approximation for estimating the change of parameters across a finite-sized normal 

shock, we employ the same assumptions used in the derivation of standard normal shock relations, save 

the exceptions already given. Namely, these include quasi-one-dimensional flow (flow parameters 

varying only in the stream-wise direction), adiabatic flow, no wall friction, and the use of the perfect ideal 

gas model as the basis for physical and thermal equations of state. It should also be noted that a known 

nozzle geometry (that is, a known variation of cross sectional area with flow direction) along with a given 

value of tshock completely determine the value of r at a given location. As such, in the present analysis we 

will treat r as an independent variable, removing the need for both detailed knowledge about channel 

geometry as well as estimates of shock thickness such as that given in Eq. 1.  

 With these assumptions, the application of continuity across the shock-plug of Fig. 2 (b) gives             

 

ρxAxVx = ρyAyVy. (4) 

 

 For an ideal gas the density is ρ = p/RT, and the speed of sound is given by RTC  . Substituting 

into Eq. (4), 
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 Recognizing V/C as Mach number, and employing RTC   once again, this becomes 
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 The pressure ratio and temperature ratio in Eq. (6) are found by the applications of conservation of 

linear momentum and conservation of energy, respectively. 

 Linear momentum in the flow direction gives 

 

pxAx + pside(Ay-Ax) + ρxAxVx
2
 = pyAy + ρyAyVy

2
.  (7) 

 

 We once again use the ideal gas relations for ρ and C along with the definition of Mach number, and 

also incorporate the relation given in Eq. (3) for pside. After much manipulation this results in 
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 Energy conservation across the shock-plug yields 
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 where h is enthalpy. Equation (9) also shows that the stagnation enthalpy h0, the resulting enthalpy if 

the fluid were brought to zero velocity, remains constant across the shock-plug. Substituting cpT for 

enthalpy as well as incorporating relations for ρ, C and Ma as before, Eq. (9) eventually yields 
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 Together Eqs. (6), (8), and (10) form the counterparts of the normal shock relations for a shock-plug. 

The reader may notice that the form of Eq. (10) is identical for both shockwaves and shock-plugs. This is 

because the form of conservation of energy resulting here depends on the shock being modelled as 

adiabatic, and is thus independent of shock thickness per se. Equations (6) and (8) reduce to normal 

shockwave relations as the area ratio r approaches one.  

 The application of the second law of thermodynamics shows that the flow across a shock is 

irreversible with an entropy generation per unit mass being equal to the increase in entropy across it: 

 

)/ln()/ln( xyxypxygen ppRTTcsss  .         (11) 

 

 Given that stagnation properties reflect the values of properties if the flow were brought to zero 

velocity isentropically, and that the stagnation temperature does not increase across a shock, the entropy 

generation can be expressed solely as a function of the decrease in stagnation pressure: 

 

)/ln( 0,,0 xyxygen ppRsss  .         (12) 

 

 As is the case with the application of conservation of energy, the form of the relation for entropy 

increase is identical for a shockwave and a shock-plug. 

 

3. Results and Discussion 
 Equations (6), (8), and (10) can be combined to eliminate pressure and temperature in order to find a 

relation between May and Max. The result is  
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 and 

 

K2 =ϕ(1 - r) . (15) 

 

 The “minus” solution in Eq. (13) corresponds to a supersonic May in which the fluid continues to 

accelerate through the plug, whereas the “plus” solution corresponds to the subsonic, shock-plug solution 

for May.  

 Figure 3 shows the variation of May with Max as calculated by Eq. (13) for various values of r. In all 

cases ϕ is set to 0.5 so that pside is the arithmetic average of px and py.  

 

 
Fig. 3. Variation of downstream Mach number for various area ratios 

 

 It is evident from Fig. 3 that the larger the difference in area between shock-plug inlet and outlet 

(smaller r), the more the shock-plug solution deviates from the standard normal shock values. The effect 

is most pronounced at smaller Max, with May becoming a function only of r at high Max. 

 Figures 4 (a) and (b) show the pressure and temperature increases across the shock-plug, 

respectively. The ranges of Max and r are the same as in Fig. 3. From Fig. 4 (a) we see that pressure 

increases less across shock-plugs compared to shockwaves, whereas Fig. 4 (b) shows that temperature 

increases more. As is the case with May, smaller area ratio results in more deviation from shockwave 

behaviour for both pressure and temperature. As opposed to May, which shows more deviation from 

shockwave behaviour at lower Max, pressure shows more deviation at higher Max. The deviation in 

temperature compared to shockwaves is small, and does not show any clear trend with Max.   

In Fig. 5 can be seen the entropy generation for the same range of parameters as in the previous 

comparisons. Shock-plugs clearly result larger entropy generation, and therefore more irreversibility than 

do shockwaves. This trend continues with larger changes in area for all Mach numbers. 

The irreversibility in shockwaves is often attributed to friction and conduction heat transfer within 

the shock itself. (Anderson, 1990) Given that the modelling equations are written assuming an adiabatic 

process with no accounting of wall friction, however, coupled with the assumption of an infinitesimally 
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thin shockwave, we may have reason to question this explanation. Germane to this discussion is the fact 

that the form of Eq. (12) for entropy generation is exactly the same as for an ideal gas undergoing an 

unrestrained, adiabatic expansion in what would otherwise be a quasistatic process. Seeing as how shock-

plugs occur over finite volumes, and that Fig. 5 shows larger irreversibilities for larger changes in area, 

we may wonder if the source of entropy generation in shocks is not better thought of as the result of the 

total pressure of a gas decreasing as it “expands against nothing,” more expansion leading to more 

irreversibility.  

 

     
 

(a)              (b) 

Fig. 4. (a) Pressure increase and (b) temperature increase across shock-plugs of various area ratios 

 

 
Fig. 5. Entropy generation per unit mass 

 

 Furthermore, the estimate for shock thickness given by Eq. 1 may also be called into question in that 

it balances pressure against viscous shear stress, yet it employs the values of pressure found from standard 

shock relations, which, as previously noted, ignore wall shear stress. Modelling a shock-plug as an 

unrestrained expansion may therefore also have value in providing better estimates for shock thickness. 

This remains a topic for future work.  

 The effects of varying values of the average pressure on the walls of the channel, pside, via changing ϕ 

are not explored in this preliminary study. Naturally questions arise as to the appropriate value of ϕ and its 

functional dependence. This too is left for future investigations. 

 

4. Conclusion 
 In this paper we have hypothesized the existence of and subsequently modelled shock-plugs, standing 

normal shocks of finite thickness. In shock-plugs the assumption of finite thickness requires analysis to 

include different upstream and downstream cross sectional areas, as well as an average pressure on the 
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sidewalls of the shock. The inclusion of these extra variables complicates the analysis of property changes 

across the shock, resulting in larger changes in Mach number accompanied by smaller pressure increases, 

larger temperature increases, and larger entropy increases. The analysis of shock-plugs also suggests that 

the entropy generation across shocks may best be visualized as a form of unrestrained expansion. The 

models presented here may provide better estimates of shock properties in applications with very small 

length scales, in which the thickness of shocks may not necessarily be negligible.  
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