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Abstract –This paper presents the electrical-mechanical dynamic modelling and testing of a lightweight-link robot 

manipulator. Mechanical dynamic modelling of lightweight robot manipulators has received extensive attention with 

the consideration of link flexibility. However few efforts have been paid to the electrical-mechanical dynamic 

modelling of lightweight-link manipulators which will provide the essential insights to control the motion and 

vibration of lightweight robot manipulators. In this work, the sub-model of an actuator (a DC servo motor) dynamics 

and the sub-model of vibration dynamics of a driven lightweight-link are established separately.  Then the two sub-

models are integrated to form a comprehensive electrical-mechanical dynamic model. The proposed electrical-

mechanical model is applied to a single lightweight link robot manipulator. The simulations and dynamics 

characterization are conducted to provide insights into the control and design of lightweight link robot manipulators. 

A real-time testing and control system is setup, and experimental testing is performed to validate the proposed 

electrical-mechanical modelling and dynamic characterization analyses.  
 

Keywords: Lightweight Robot Manipulators, Electrical-Mechanical Dynamics, Elastic Vibration, 

Vibration Testing, Boundary Conditions, Vibration Modes, Laplace Transform, Transfer Function 

 

 

1. Introduction 
 It is desirable to design and construct lightweight manipulators for manufacturing and aerospace 

applications which require robot manipulator to be capable of moving swiftly. In contrast to the rigid 

manipulators, lightweight manipulators offer advantages such as higher speed, better energy efficiency, 

improved mobility, and higher payload-to-arm weight ratio. However, at high operational speeds, inertial 

forces of moving components become quite large, leading to considerable deformation in the lightweight 

links, and generating unwanted vibration phenomena. Hence, the flexibility of lightweight links must be 

taken into account in the modelling, design, and control of the robot manipulators.  

 In the past decades, significant progresses have been made into the dynamic modelling of 

manipulators or mechanisms with flexible links (Lowen and Jandrasits, 1972; Lowen and Chassapis, 

1986; Shabana, 1997; Dwivedy and Eberhard, 2006; Book, 1993; Benosman and Vey, 2004). Different 

discretization techniques, such as the finite element method (FEM) (Erdman et al, 1972; Immam and 

Kraner, 1973; Nath and Ghosh, 1980; Cleghorn et al, 1981; Turic and Midha, 1984; Zhang and Yu, 2000; 

Usoro et al, 1986), the assumed mode method (AMM) (Book, 1984; Asada et al, 1990; Baruh and 

Tadikonda, 1989; Hustings and Book, 1986; Barieri and Ozguner, 1988; Bellezza et al, 1990; Low and 

Lau, 1995; Shabana, 1996; Zhang et al, 2007), and the lumped parameter method (LPM) (Ge et al, 1997; 

Tosunogle et al, 1992; Megahed and Haza, 2004; Mihai and Siamak, 2014), have been reported 

extensively for modelling the dynamics of flexible-link robot manipulators or mechanisms. However, few 

efforts have been devoted to generating an electrical-mechanical dynamic model of a flexible-link robot 

manipulator by including the actuation dynamics (i.e. motor dynamics). The electrical-mechanical 

dynamic model will provide essential insights to the control of robot motions and vibrations for achieving 

the satisfactory performance.  
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 This research aims to developing an electrical-mechanical dynamic model by integrating the actuator 

dynamics and the vibration dynamics of a driven lightweight link, and investigating the dynamic 

characteristics. The electrical-mechanical model is applied to a single lightweight-link robot manipulator. 

Numerical simulations are performed using the developed dynamic models, and experimental testing is 

conducted using an in-house developed real-time testing and control system based on LabView real-time 

software and hardware. The simulation and testing results are analysed and compared to validate the 

proposed dynamic modelling of lightweight-link robot manipulators.  
 

2. Overview of Electrical-Mechanical Modelling  
 For the simplicity, a single flexible-link manipulator driven by a permanent magnet DC motor is 

presented to illustrate the procedure and principle of electrical-mechanical modelling. As shown in Fig. 1, 

the physical model is divided into a DC motor and a slewing beam. Dynamic modelling is first conducted 

for the DC motor by defining the voltage/current as an input, and the angular velocity/position as an 

output. Then the slewing beam dynamic modelling is performed by defining the angular position as an 

input and the elastic deformation as an output. The two sub-models are finally integrated into a system 

dynamic model of the flexible-link manipulator.   

 

 
Fig. 1. Schematic diagram of a single flexible-link manipulator driven by a DC motor  

 

3. Dynamics of a DC Motor  
 In this section, a dynamic model of a DC motor is established based on the working principle of a DC 

motor: Kirchhoff’s law, electro-magnetic force, and rotor dynamics. In the model, the input is defined as 

voltage or current, and the output is defined as angular velocity or position.   

 

3. 1. Open-Loop Dynamics of a DC Motor 
 In this work, a permanent magnet DC motor is chosen to drive the lightweight manipulator. A 

permanent magnet DC motor is controlled by adjusting the current or voltage of the armature because the 

field current is assumed as constant. Without control loops, the dynamics of a permanent magnet DC 

motor can be expressed using a block diagram as shown in Fig. 2 where 𝑉𝑎(𝑠) is the voltage input to the 

DC motor, 𝑉𝑎
′(𝑠) = 𝑉𝑎(𝑠) − 𝑉𝑏(𝑠) the effective voltage applied to the armature, 𝑉𝑏(𝑠) =𝐾𝑏𝜔(𝑠)the back 

electromotive-force voltage, 𝐾𝑏 the electromotive-force constant, 𝜔(𝑠) the angular velocity output of the 

motor, 𝜃(𝑠) the angular position output of the motor, 𝑅𝑎 the armature resistance, 𝐿𝑎 the armature 

inductance, 𝑇𝑚 the motor torque, 𝑇𝐿 the load torque, 𝑇𝑑 the disturbance torque, 𝐽 the rotor inertia, and 𝑏 is 

the viscous damping coefficient.  

The voltage applied to the armature can be written as using Kirchhoff’s equation as 

 

𝑉𝑎
′(𝑡) = 𝑉𝑎(𝑡) − 𝑉𝑏(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎

𝑑𝑖𝑎(𝑡)

𝑑𝑡
    (1) 

 

 Where 𝑖𝑎 is the armature current. Taking Laplace transform, the armature current can be written in 

the Laplace domain as 
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𝑖𝑎(𝑠) =
𝑉𝑎

′(𝑠)

𝑅𝑎+𝐿𝑎𝑠
=

𝑉𝑎(𝑠)−𝑉𝑏(𝑠)

𝑅𝑎+𝐿𝑎𝑠
=

𝑉𝑎(𝑠)−𝐾𝑏𝜔(𝑠)

𝑅𝑎+𝐿𝑎𝑠
=

𝑉𝑎(𝑠)−𝑠𝐾𝑏𝜃(𝑠)

𝑅𝑎+𝐿𝑎𝑠
        (2) 

 

 
Fig. 2. Block diagram of a permanent magnet DC motor without closed-loop control   

 

 The motor torque can be calculated as 𝑇𝑚(𝑠) = 𝐾𝑚(𝑠)𝑖𝑎(𝑠) =
𝐾𝑚𝑉𝑎

′(𝑠)

𝑅𝑎+𝐿𝑎𝑠
 as shown in Fig. 2 where 𝐾𝑚 

is the motor constant or the torque constant.  

 On the other hand, the rotor dynamics of the motor can be written based on the Newton’s second law 

as 

 

𝐽
𝑑2𝜃(𝑡)

𝑑𝑡2

̈
+ 𝑏

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑇𝐿(𝑡) = 𝑇𝑚(𝑡) − 𝑇𝑑(𝑡)        (3) 

 

 Eqn. (3) can be written in the format of the transfer function in the Laplace domain as: 
𝜃(𝑠)

𝑇𝐿(𝑠)
=

1

(𝐽𝑠+𝑏)𝑠
. 

 Based on the block diagram, the transfer function of the angular position to the applied voltage can 

be calculated as  

 

𝐺𝜃𝑉(𝑠) =
𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝐿𝑎𝐽𝑠3+𝑅𝑎𝐽𝑠2+(𝑅𝑎𝑏+𝐾𝑚𝐾𝑏)𝑠
                      (4) 

 

 Taking the inverse Laplace transform of Eqn. (4), the dynamic differential equation of the DC motor 

in the time domain can be written as  

 

𝐿𝑎𝐽

𝐾𝑚

𝑑3𝜃(𝑡)

𝑑𝑡3 +
𝑅𝑎𝐽

𝐾𝑚

𝑑2𝜃(𝑡)

𝑑𝑡2 + (
𝑅𝑎𝑏

𝐾𝑚
+ 𝐾𝑏)

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑉𝑎(𝑡)               (5) 

 

 Eqn. (5) is the 3rd order ordinary differential equation representing the open-loop dynamics of the DC 

motor with the input of the applied voltage 𝑉𝑎(𝑡) and the output of the angular position 𝜃(𝑡). 

 

3. 2. Closed-loop Feedback Control Dynamics of a DC motor 
 To achieve precise motion and robustness against the disturbance, it is imperative to add a closed-

loop feedback controller to the system. In this work, the PD position controller is added to achieve the 

precise angular position of the motor shaft as shown in Fig. 3. Substituting 𝑉𝑎(𝑡) = 𝐾𝜔
𝑑(𝜃𝑑−𝜃)

𝑑𝑡
+

𝐾𝜃(𝜃𝑑 − 𝜃) into Eqn. (5), the dynamic equation with the PD feedback controller of the DC motor can be 

derived by as   

 

𝐿𝑎𝐽

𝐾𝑚

𝑑3𝜃(𝑡)

𝑑𝑡3 +
𝑅𝑎𝐽

𝐾𝑚

𝑑2𝜃(𝑡)

𝑑𝑡2 + (
𝑅𝑎𝑏

𝐾𝑚
+ 𝐾𝑏)

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑉𝑎(𝑡) = 𝐾𝜔

𝑑(𝜃𝑑−𝜃)

𝑑𝑡
+ 𝐾𝜃(𝜃𝑑 − 𝜃)     (6) 
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 where θd is the desired angular position that is defined as the precision motion. Eqn. (6) can be 

reorganized as  

 
𝐿𝑎𝐽

𝐾𝑚

𝑑3𝜃(𝑡)

𝑑𝑡3 +
𝑅𝑎𝐽

𝐾𝑚

𝑑2𝜃(𝑡)

𝑑𝑡2 + (
𝑅𝑎𝑏

𝐾𝑚
+ 𝐾𝑏 + 𝐾𝜔)

𝑑𝜃(𝑡)

𝑑𝑡
+ 𝐾𝜃𝜃(𝑡) = 𝐾𝜔

𝑑𝜃𝑑

𝑑𝑡
+ 𝐾𝜃𝜃𝑑  (7) 

 

 
Fig. 3. Block diagram of a permanent magnet DC motor under PD feedback position control  

 

4. Dynamics of a Slewing Flexible Beam  
 To model the flexibility of a slewing beam, the continuous beam can be discretized using the finite 

element method (FEM), the assumed mode method (AMM), and the lumped parameter method (LPM). In 

this work, the AMM and the LPM are employed to establish the dynamic equation of a slewing beam as 

shown in Fig. 1.  

 In the AMM, the deformation of the continuous beam is expressed as the linear superposition of the 

vibrations contributed from all the vibration modes, namely,𝑤(𝑥, 𝑡) = ∑ 𝜂𝑖(𝑡) ∙ 𝜓𝑖(𝑥)𝑛
𝑖=1  where 𝜓𝑖(𝑥) is 

the  𝑖𝑡ℎ order modal shape function of the slewing beam, and 𝜂𝑖(𝑡) is the 𝑖𝑡ℎmodal coordinate. The modal 

shape functions are calculated based on the boundary conditions. For the slewing beam driven by a DC 

motor, the boundary conditions are approximated by treating one end to be fixed and one end to be free. 

Based on the fixed-free boundary condition, the modal shape function is given as  

 

𝜓 𝑖(𝑥) = 𝐶𝑖[𝑠𝑖𝑛(𝛽𝑖𝑥) − 𝑠𝑖𝑛ℎ(𝛽𝑖𝑥) − 𝛼𝑖(𝑐𝑜𝑠(𝛽𝑖𝑥) − 𝑐𝑜𝑠ℎ(𝛽𝑖𝑥))]    (8) 

 

 where 𝛼𝑖 =
𝑠𝑖𝑛(𝛽𝑖𝑙)+𝑠𝑖𝑛ℎ(𝛽𝑖𝑙)

𝑐𝑜𝑠(𝛽𝑖𝑙)+𝑐𝑜𝑠ℎ(𝛽𝑖𝑙)
, 𝑙  is the length of the beam, and 𝛽𝑖 is calculated based on the frequency 

equation: 𝑐𝑜𝑠ℎ(𝛽 ∙ 𝑙) ∙ 𝑐𝑜𝑠(𝛽 ∙ 𝑙) = −1. The frequency of the 𝑖𝑡ℎ mode can be calculated using  𝜔𝑖 =

(𝛽𝑖 ∙ 𝑙)2 ∙ √
𝐸∙𝐼

𝜌∙𝐴∙𝑙4 where 𝜌 is the material density, 𝐴 cross-sectional area of the beam, 𝐼 the inertia moment 

of the cross-section area, and the Young’s modulus of the beam material.  

 To calculate the 𝑖𝑡ℎmodal coordinate 𝜂𝑖(𝑡), the kinetic energy T and the potential energy P are 

expressed in terms of the beam deformation 𝑤(𝑥, 𝑡) = ∑ 𝜂𝑖(𝑡) ∙ 𝜓𝑖(𝑥)𝑛
𝑖=1 . The calculated kinetic and 

potential energies are then submitted into the Lagrange equation 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜂𝑖̇
) −

𝜕𝑇

𝜕𝜂𝑖
−

𝜕𝑉

𝜕𝜂𝑖
= 𝑄𝑖where 𝑄𝑖 is the 

generalized force for the ithmode. The ithmodal coordinate equation can be given as 

 

𝐶𝑖 ∙ 𝜂�̈� +
𝐸𝐼

𝜌𝐴
𝐺𝑖 ∙ 𝜂𝑖 = −𝐷𝑖�̈�       (9) 

 

 where  𝐶𝑖 = ∫ 𝜓𝑖(𝑥)2 𝑑𝑥
𝑙

0
,  𝐺𝑖 = ∫ (

𝑑2

𝑑𝑥2 𝜓𝑖(𝑥))

2

𝑑𝑥 
𝑙

0
, 𝑎𝑛𝑑 𝐷𝑖 = ∫ 𝜓𝑖(𝑥) ∙ 𝑥 𝑑𝑥

𝑙

0
. 
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 Taking the Laplace transform of Eqn. (8), the deformation of the slewing beam can be written in the 

Laplace domain as 

 

𝑤(𝑥, 𝑠) = ∑ 𝜂𝑖(𝑠) ∙ 𝜓𝑖(𝑥) = −𝜃(𝑠) ∑
𝜓𝑖(𝑥)𝐷𝑖𝑠2

𝐶𝑖𝑠2+
𝐸𝐼

𝜌𝐴
𝐺𝑖

𝑛
𝑖=1

𝑛
𝑖=1        (10) 

 
 Reorganizing Eqn. (10), the transfer function of the deformation of the slewing beam to the angular 

position is given as 

 

𝐺𝑤𝜃(𝑠) =
𝑤(𝑥,𝑠)

𝜃(𝑠)
= − ∑

𝜓𝑖(𝑥)𝐷𝑖𝑠2

𝐶𝑖𝑠2+
𝐸𝐼

𝜌𝐴
𝐺𝑖

𝑛
𝑖=1       (11) 

 

 In this work, the LPM model is also established to investigate the vibration properties of the slewing 

beam. In the LPM, the continuous beam is discretized using concentrated masses connected by massless 

springs. The developed LPM model is capable of taking into account the impact of motor rotor (plus hub) 

inertia and motor motion controller on the vibration properties of the slewing link. The boundary 

conditions used in the LPM model can be easily tuned to be close to the real boundary conditions which 

are between the pinned-free and the fixed free. The determination of the exact boundary condition of 

flexible-link robot manipulator is a complicated and challenging issue. Due to the limitation of the space, 

the detailed derivation of the LPM mode is not presented in this work but the simulations are conducted 

and given for dynamic analysis and comparison in Section 6.  

 

5. Electrical-Mechanical System Model 
 Integrating the DC motor dynamics Eqn. (5) in Section 3 and the slewing beam dynamics Eqn. (11) 

in Section 4, the electrical-mechanical system model of the lightweight link robot manipulator can be 

presented using a block diagram as shown in Fig.4. The electrical-mechanical system dynamic model can 

be given in terms of a transfer function as 

 

 GwV(s) =
w(x,s)

Va(s)
= Gwθ(s). GθV(s) = −

Km

LaJs3+RaJs2+(Rab+KmKb)s
∙ ∑

ψi(x)Dis2

Cis2+
EI

ρA
Gi

n
i=1      (12) 

 

 
Fig. 4. Schematic diagram of the electrical-mechanical system model  

 

 Taking the inverse Laplace transform of Eqn. (12), the ordinary differential equation of the electrical-

mechanical dynamics of a lightweight robot manipulator can be obtained. Although it is beyond the goal 

of this work, the obtained electrical-mechanical system dynamic model can be used to investigate: (1) 

how the DC dynamics and control impact the deformation of the flexible link; (2) how the vibration of the 

slewing link is suppressed by controlling the DC motor. 

 

6. Numerical Simulation and Experimental Testing 
 In this section, numerical simulations and experimental testing are conducted, and then the numerical 

and experimental results are compared and analysed to validate the developed dynamic models. As shown 

in Fig. 5, an experimental system was developed using NI LabView real-time module and CompactRIO 

for real-time control of DC motor and vibration testing. The lightweight link is a beam made of 

aluminium with the geometrical parameters: length 0.395 m, width 0.0395 m, thickness 0.0014 m.  
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Fig. 5. Schematic diagram (left) and photo (right) of the experimental system setup 

 

6. 1. Simulation and Testing of DC motor Dynamics 
 To verify the DC dynamic models, the DC motor shaft angular position and velocity are measured 

and recorded with the given input voltage or current (only the current can be directly measured for the 

current testing system as shown in Fig. 6). Experimental results are compared to the numerical results 

based on the analytical models developed in Section 2.  As shown in Fig. 7, the comparison and analyses 

demonstrate the numerical simulation results well agree to the experimental results and the dynamics 

models developed in Section 2 are validated.   

 

   

 
Fig. 6. Armature current of the DC dynamics 

 

 
Fig. 7. Simulation and testing results of the DC angular positon and velocity 



 

251-7 

6. 2. Simulation and Testing on Modal Properties of the Flexible Beam 
 

Table. 1. Frequency testing and simulation of the flexible beam 

 
 
Frequency 

(Hz) 

Fixed-Free (Cantilever) Pinned-Free Driven by Motor 

Theoretical  Experimental Theoretical  Experimental LPM AMM 

1st mode 7.8 7.2 34 28 30 7.8 

2ndmode 49 45 110 75 98 - 

3rd mode 140 119 230 - 200 - 

 

 The modal properties are tested using an impact hammer. The hamper is used to hit the beam, and the 

strain gauges are used to pick up the vibration of the beam. The testing are conducted for two cases: the 

beam is clamped at one end, namely assuming the beam as a cantilever beam; the beam is held by the DC 

motor with the controller turning on for simulating the  driving situation. The measured frequencies are 

listed in the Table 1. The theoretical frequencies are calculated for different cases and listed in the Table 1 

as well. As shown Table 1, the boundary condition of the driven beam is between the fixed-free and 

pinned-free, and is very close to the boundary condition used in the LPM model as it is capable of 

including the impact of the hub and rotor on the vibration properties. The boundary condition could 

change with the system setup and DC motor controller design, and it is a complex issue. The detailed 

investigations on the variable boundary condition remain the focus of our ongoing research, and are not 

discussed in this work due to the limited space.  

 

6. 3. Simulation and Testing of the Beam Driven by the DC Motor 
 The simulation and testing are conducted to a single flexible-link driven by the DC motor. The 

current applied to the armature is recorded as shown in the Fig. 8.  

 

 
Fig. 8. Current applied to the armature of the DC motor 

 

 The shaft angle of the DC motor is acquired by the encoder and depicted as shown in Fig. 9.  The tip 

deformation of the slewing beam is measured using the strain gauges. The comparison of tip deformation 

between the testing and simulations of LPM and AMM models are shown in Fig. 10. The comparison 

shows that the simulation results using the developed electrical-mechanical model agree well on the 

experimental results. The LPM-based model has better results as expected. The reason is that the LPM 

model employs the variable and adjustable boundary condition by including the impact of rotor inertia 

and motion controller on the structural vibration of the beam. This is the motivation of our ongoing work 

that will be devoted to the determination of the boundary condition in electrical-mechanical modelling 

and vibration characterization of flexible-link manipulators.  

 

7. Conclusion and Discussion 
 The system dynamics of a lightweight-link robot manipulator has been investigated by including the 

DC motor dynamics. The electrical-mechanical dynamic model of the robot manipulator has been 
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established as the function of the voltage applied to the DC motor as the input, and the elastic deformation 

of the lightweight link as the output. To verify the developed system model, a real-time control and 

testing system was established using NI CompactRIO and LabView Real-time module so that the 

experimental testing was conducted to compare the numerical simulation results. The developed model 

provides the essential insights on how the DC motor dynamics and control impact the deformation of the 

driven flexible beam, and how the deformation of flexible links can be reduced by controlling the DC 

motor. The research in this work is targeted at a single link robot manipulator, but the methodology can 

be extended to a robot system with multiple links.  

   

             
Fig. 9. Rotational angle of the DC motor 

 

       
Fig. 10. Comparison of tip deformation between the testing and simulations 
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