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Abstract -For over two decades, LOOP (French acronym for Process Observation and Optimization Laboratory) 

researchers have been working at developing and/or improving specific sensors for flotation columns and their use 

for automatic control of this process. Several papers have already been published for the mineral processing 

industrial and scientific community in peer-reviewed journals and conference proceedings, but very few have been 

presented in European conferences. This paper summarizes the latest milestones completed by the group. On the 

instrumentation side, developments encompass a more accurate method for measuring electrical conductivity for 

flotation column sensors, a device for estimating the bias rate, and a better procedure for evaluating bubble size from 

images taken by bubble viewers. In terms of process control advances, the discussion will focus on results for 

bubble size control in a two-phase system, and the application of a 2x2 multivariable predictive control to a pilot 

flotation column running in parallel to industrial columns in a Québec concentrator. Finally, the latest work on two-

phase bubble size distribution modeling and control will be summarized.  
  

Keywords: flotation column, bias rate, gas hold-up, bubble size distribution, multivariable predictive 

control.   

 

 

1. Introduction 
 Since the first successful industrial implementation in 1981 (Les Mines Gaspé, Canada), flotation 

columns have been used in several mineral applications (coal, base metals, phosphates, etc.), mainly in 

cleaning stages as a result of their froth washing capabilities. Despite their widespread usage, measuring 

some column-specific variables, and consequently their use for process control, is rather limited. The 

process efficiency, reflected by the concentrate grade and recovery (primary variables), is dependent on 

so-called “secondary variables” such as froth depth (Hf), bias rate (Jb), gas hold-up (g) and bubble surface 

area flux (BASF or Sb). Only the first one is presently monitored in plants, usually through floats coupled 

to ultrasound, and controlled by manipulating the set-point of the tailing flow rate (or valve position). The 

gas hold-up is the column volume fraction occupied by bubbles, thus available for particle collection, i.e. 

directly related to valuable mineral recovery. Even though off-the-shelf sensors are commercially 

available (O'Keefe et al., 2007; Gomez et al., 2003), it is not monitored on-line in industrial applications 

and obviously not controlled. The bias rate is defined as the net downward flow of water crossing the 

interface, and as such it dictates the quality of the column froth cleaning action. Unfortunately, it is not 

measured either.  

 BSAF is defined as the rate of bubble surface rising per column unit section. As such, it is the 

variable most directly associated to the collection process (bubble surface related), and thus to recovery. 

However, the estimation of a “global” BSAF implies knowing the average bubble diameter (Db,avg), a 

variable which has started being measured off-line only very recently, using the McGill Bubble Viewer 

(Chen et al., 2001). Amelunxen and Rothman (2009) attempted to use the BSAF for optimizing the 
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recovery. They estimated the Db,avg through a drift-flux analysis (DFA), and used g measurements 

from a CiDRA™model GH-100. As mentioned by the authors, this approach though, implies assuming a 

value for the pulp viscosity. Having a robust on-line Db,avg measurement will certainly encourage the use 

of BSAF for industrial column control. Nonetheless, the Db,avg is a misleading concept since flotation 

bubbles are quite different in size; therefore using the actual bubble size distribution (BSD), and/or a sort 

of ‘inferred BSAF distribution’, would be more relevant.  

 Bubble size depends mainly on three factors: gas flow rate (Jg), sparger characteristics (orifice size, 

porosity, shear water, etc.), and frother type and concentration. Any effort for controlling the bubble size 

will require manipulating these variables. Whereas Jg and sparger characteristics/settings can presently be 

adjusted, frother concentration isn’t. Some off-line measurement methods have been suggested, but the 

laboratory procedure introduces long delays incompatible with on-line control. Aiming at an automatic 

control application, Maldonado et al. (2010a) recently proposed an on-line estimation method, using Jg 

and g values, from already available commercial sensors. 

 In summary, with the exception of froth depth, continuous monitoring of flotation column variables 

is so far limited to flow rates (gas, feed, tailings, wash water), i.e. only to available manipulated variables, 

and grades (generally the concentrate).  Process control (generally PID) is also mainly limited to froth 

level and some flow rates such as wash water (Jww) and air (Jg). Primary variables, concentrate grade and 

recovery, are targeted through rule-based techniques. 

 However, the benefits of advanced model-based control and supervision techniques are nowadays 

well recognized, and this in many industrial fields (Quin and Badgwell, 2003). LOOP researchers have 

tested a successful application of multivariable predictive control to a pilot-scale flotation column 

operating with a three-phase (slurry-air) system (Calisaya et al., 2012). Using a modified version of the 

McGill Bubble Viewer, Maldonado (2008a) measured and modeled the BSD in a two-phase (water-air) 

system laboratory column. This work led to the automatic control of the Sauter mean bubble size D32 

(Maldonado et al., 2010b) and the whole BSD (Riquelme et al. 2014b), both in the same two-phase 

laboratory column.  

 

2. New Instrumentation Developments  

 

2. 1. Conductivity Measurements Using A Field-Programmable Gate Array 
 As mentioned before, froth depth is successfully measured in industrial columns using a float. For 

laboratory or pilot-scale units, such as those used by our research group, this option is not possible 

because of the small cross section of the columns. Instead, froth depth monitoring relies on a semi-

analytical procedure based on the electrical conductivity profile across the interface position (Maldonado 

et al., 2008b). The conductivity is measured by sequentially powering a series of “conductivity cells” 

(eleven cells 10 cm apart, each one made of two electrodes flush mounted inside the laboratory column) 

with a high frequency alternating current, to avoid electrolysis and polarization. Both the McGill g sensor 

and the Laval Jb sensor (later on described), also rely on similar conductivity-based techniques. 

 The main disadvantage of this method is the high load produced in the power supply when all 

conductivity cells are connected. Moreover, it is sensitive to noise, and the number of output bits of the 

analog-to-digital converters limits the resolution. This can become a limitation, when the conductivity 

spans a wide range of operation. Furthermore, since the relationship between the output voltage and 

conductivity is usually nonlinear, the resolution is related to the changes in the function slope. 

 To overcome these problems, Riquelme et al. (2014a) used a different approach where each 

conductivity cell is sequentially connected to a square wave oscillator circuit. Its oscillation frequency 

becomes a function of the sample conductivity. This strategy reduces the problems related to the noise 

and DC components, since the square wave frequency can be measured with a digital input. Measurement 

resolution can be improved by increasing the clock frequency. Since the hardware handles digital signals, 

data can be transmitted over long distances without degradation. Moreover, the approach allows a wide 

operational range and only requires a single point for the calibration, which is very convenient in an 
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industrial environment. A Field Programmable Gate Array (FPGA) is used to measure the oscillation 

period, display the data on a LCD screen, communicate the information to a computer and manage the 

switching between the various measurement cells.  

 
2. 2. Bias Rate Estimation 

 At steady-state, bias rate (Jb) can be estimated from a water balance in the lower part of the pulp 

zone, underneath the feed port. As such, a small value (Jb) is calculated by subtracting two large values 

affected by measurement errors, propagated and ‘amplified’, thus limiting the accuracy of the result. 

Moreover, the calculation assumes steady-state conditions, thus excluding any control application. As a 

result, the bias rate is simply not measured. Maldonado et al. (2008c) proposed a new approach for a two-

phase system, relating Jb to the volumetric fraction of wash water (w) underneath the liquid-froth 

interface; this latter is estimated through a local conductivity balance below the interface (near the feed 

port), leading to: 
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 kf , kw and k* respectively represent the conductivity of the feed, wash-water streams, and that of the 

liquid (gas-free) immediately below the interface. The last conductivity value (k*) is estimated by the 

right-hand side relation in equation 1, where ki is the conductivity of the aerated liquid below the interface 

(measured with a flow cell, e.g. the lowest cell of the level sensor), kl and klg are measured by the McGill 

g sensor located nearby. Using this kl / klg ratio, w is computed as: 
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Fig. 1. Relationship between bias rate and volumetric fraction of wash-water 

 

 

 Fig. 2. Bias rate validation (estimated = using the additivity rule) 
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 Figure 1 shows the static relationship between the bias rate measured through the “additivity-rule” 

(valid only for two-phase steady-state systems), and that obtained with the present method (Jb vs w). 

Figure 2 depicts the validation of this method using a different set of data.  

 Esteban-Rojas (2011) extended this approach to estimate w in a three-phase system. Considering that 

the air hold-up is measured sufficiently close to the interface, assuming non-conductive solids, and using 

the “additivity rule” for a three-phase system, w can be estimated from: 
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 where kf is the conductivity of feed pulp, ki

 
is the conductivity of pulp-gas mixture underneath the 

interface, kw is the conductivity of wash water and s is the solid concentration (%) in the pulp being fed. 

This relation was validated as part of the control tests done at a concentrator, as described in section 3.1. 
 

2. 3. Bubble Size Measurement 
 As previously mentioned, the BSD and BSAF are directly related to the collection process. 

Therefore, targeting a given recovery value implies monitoring and controlling these variables. The 

former has lately become possible using the so-called “bubble viewer” for bubble image acquisition and 

processing. In order to obtain accurate estimates of the BSD, hundreds of pictures must be analyzed. The 

image processing program commonly used (Circular Shape Detection, CSD) has shown some flaws, as it 

does not detect large, overlapped, clustered, elliptical or incomplete (at the edge of the frame) bubbles. 

The image presented in Figure 3 (left) shows examples of “uncounted” bubbles (greyish ones). Vinnett et 

al. (2012) have suggested an off-line procedure to account for clustered and large bubbles, which 

obviously is not useful for control purposes. Recently, Riquelme et al. (2013) have proposed an on-line 

strategy for bubble detection addressing two issues: detecting non-perfectly circular bubbles, and 

automating the procedure. The technique makes use of the Circular Hough Transform (CHT) to detect 

any sort of bubbles. Before applying the pre-calibrated CHT-based algorithm, the original image must 

undergo a series of automated pre-processing steps. To evaluate the proposed method, tests were carried 

out in a two-phase laboratory flotation column. A set of 25 pictures (bubbles between 1 and 70 pixels) 

was analyzed using the CSD algorithm, the CHT algorithm and a “manual” bubble count.  Figure 3 

compares the number of detected bubbles (for a given image) between the CSD and the CHT methods. 

 

 
Fig. 3. Comparison between detection algorithms (left: circular detection; right: CHT based method) 

  

 Although not so clear in a black-and-white reproduction, the CSD method missed all large and small 

attached bubbles (greyish bubbles), whereas the CHT-based algorithm detects them all. The reference 

manual count allowed identifying a total of 537 bubbles whereas the CHT-based and CSD method 

algorithms respectively reported 525 and 377 bubbles. It is clear that (a) the cumulative function obtained 
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with both the CHT-based algorithm and the manual count are similar, and (b) the precision of the CSD 

method decreases for bubbles larger than 30 pixels in diameter (larger bubbles) thus introducing biases. 

 

3. New Process Control Developments 
 

3. 1. Multivariable Predictive Control Of Hf, Jb And G 
 A hierarchical framework is generally recommended for adequate process control. The resulting 

stack of ‘control layers’ are often depicted in a triangular structure.  From the base to the top, the four 

layers are: instrumentation, regulatory control, advanced process control and real-time optimization.  

Regulatory control consists of local SISO (single input – ingle output) control loops (PID) providing a 

steady operation for the flotation column inputs: feed (whenever possible), gas and wash water flow rates. 

It is also assumed that the feed has been correctly conditioned ensuring adequate pH and reagent 

concentration.  The advanced control layer aims at maintaining the process (secondary) variables, such as 

the froth depth, bias rate, froth parameters, gas hold-up or bubble surface area flux, at their own set point, 

hopefully related to the metallurgical objectives (recovery and grade). Real-time optimization (RTO) 

allows managing on-line the set points of secondary variables, leading, through a mathematical routine, to 

optimal metallurgical indices. 

 Maldonado and LOOP co-workers (2009) showed the potential of this control philosophy (Figure 4). 

The experimental set-up consisted in a Plexiglas column of 7.5 m height and 5 cm diameter, using 

conductivity-based sensors for measurement of Hf , w and g , peristaltic pumps for handling the various 

streams, and ad-hoc flow meters for gas, water and pulp streams.  Wash-water and air flow rates were 

managed by PI controllers implemented in a Moore Micro 353
©
 controller. Graphical interfaces and data 

acquisition were performed by a HMI/SCADA software iFIX
©
, operating under a Windows

©
. An Opto 

22
©
 I/O system was used to centralize sensor and actuator signals. The control algorithms were 

implemented in MatLab
©
, all signals being sampled every two seconds.  The considered secondary 

variables were the froth depth, bias rate (or w), and gas hold-up.   

 A 2x2 model-based predictive controller (MPC) (manipulating the wash-water and gas flow rates) 

supervised w and g, and complemented the standard PI used for froth depth control manipulating the 

tailings flow rate.  Like for industrial applications, froth depth control essentially aimed at maintaining a 

stable operation.  The multivariable controller added a very interesting feature: it was designed to 

optimize indirectly the grade and recovery, via the gas hold-up and bias rate set-points.  More precisely, 

the strategy consisted in selecting a set point exceeding the normal physical values for g, while 

simultaneously satisfying operational constraints, such as ensuring a positive Jb to prevent gangue 

entrainment. This was equivalent to maximizing the BSAF available for particle collection, thus 

maximizing recovery, and avoiding deterioration of the concentrate grade.  

 

 
Fig. 4. Control system performance under active constraints on bias rate (lower bound)  and wash-water flow rate 

(upper bound) 
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Fig. 5. Control strategy assessment at the AEM-Laronde plant; manipulated ∕ controlled variable (-),  set-point (- -), 

constraint (- .) 

 

 Experimental work undertaken with a two-phase system showed the feasibility of such approach, i.e. 

requesting a high gas hold-up set point, to optimize the flotation column operation, while respecting the 

constraints on the bias rate (Figure 4). In particular, the bias rate lower-limit imposed an upper bound on 

the required superficial gas velocity to prevent concentrate grade deterioration due to hydraulic gangue 

entrainment (Maldonado et al., 2009). The same control strategy was also successfully implemented at the 

Agnico-Eagle Mines, Cu-Zn Laronde concentrator in Abitibi (Québec) using a similar experimental set-

up, but with a 15 cm diameter column (Calisaya et al., 2012). The column was continuously fed with a 

slurry flow diverted from the third cleaner column feed (copper circuit). This campaign aimed at 

validating for a three-phase system the various conductivity-based sensors and the proposed control 

strategy.  In addition, samples of feed, concentrate, and tailings were collected when the column was at 

steady-state to evaluate the metallurgical performance indices under different operating (controlled) 

conditions. Results similar to those shown in the previous case study were obtained. Figure 5 shows the 

long-term behaviour of the control system under set-point changes and disturbances.  

 

3. 2. Mean Bubble Size Control 
 This work explored the possibility of controlling the Sauter mean diameter as a first step towards the 

control of bubble surface area flux (Maldonado et al.,2010b). A frit-and-sleeve sparger (Kracht et al,2008) 

was implemented to have an extra degree-of-freedom, through the flow rate of shear water (Jls) injected 

through the sparger gap used to modify the bubble size. The D32 was calculated on-line from the 

measured BSD (image processing). A Gaussian mixture model was proposed.  Minimizing the log-

likelihood of the data points and using a gradient descent method allowed determining the model 

parameters. Lastly, an internal model controller (IMC) based on a Wiener model manipulated the shear 

water superficial velocity set-point to supervise the D32. To evaluate the performance of the control 

system, the laboratory column (5 cm diameter) was first filled with a solution containing 10 ppm Dow-

froth 250. Then, changes on superficial gas velocity and frother concentration were implemented to 

simulate disturbances affecting the D32 control loop. 

 Figure 6 shows the controlled variable, D32, and the inner loop manipulated variable, Jls. Good 

tracking performances can be achieved when the pump speed was not saturated.  More details about the 

tests and their results are provided in the reference (Maldonado et al., 2010b). Figure 7 shows the trends 

for both the gas hold-up and bubble surface area flux for test conditions shown in Figure 6. A significant 

correlation can be seen between gas hold-up and bubble surface flux, initially suggesting that both 

variables carry similar information and consequently either variable could be used for control purposes. 
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Fig. 6. Average bubble diameter (D32) control: tracking and regulation performances 

 

 
Fig. 7. Average bubble diameter (D32) control: relationship between D32,  g and BSAF 

 

 One potential problem with controlling the BSD via its mean value (in this case, the D32) is that all 

the available information regarding the shape of the bubble size distribution, such as multi-modal and 

tailing behaviour, is completely lost in this averaging exercise.  In fact, it is possible to generate very 

different bubble size distributions having the same D32. Therefore, using the latter for control purposes 

will be appropriate only for unimodal narrow BSD. Finally, frother concentration was considered in this 

study as an unknown disturbance.  Since it has a strong effect on the bubble size, its use as a manipulated 

variable deserves to be explored. 

 

3. 3. Modelling And Control Of Bubble Size Distribution 
 The objective of this work is to control the bubble size distribution since controlling D32 may lead to 

various BSD and thus potentially very different flotation performances. 

 The automated CHT-based algorithm allowed monitoring the BSD from which a Wiener model 

(dynamic model with nonlinear gains) is estimated. The outputs of the Wiener model are the mean and 

standard deviation of the distribution while the inputs are the gas and shearing water (frit-and-sleeve 

sparger) flow rate set-points. Based on the Wiener model, a constrained nonlinear model predictive 

controller is designed to control the mean and standard deviation of the distribution. 

 This control algorithm was tested on a two-phase pilot column. Results show that the proposed 

approach leads to good control performances, as depicted in Figure 8, confirming the possibility to use 
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this strategy to optimize the valuable mineral recovery by adequately selecting the BSD for a given 

particle size distribution. 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

(d) 

Fig. 8. a) Gas flow rate set-point and its constraints; b) Shearing-water flow rate set-point  

and its constraints; c) BSD mean and set-point; d) BSD standard deviation and set-point 

(red lines indicate the constraints or the set-point value) 
 

4. Conclusion 
 The work summarized in this paper and references herein, shows that adequate sensors and/or 

methods exist for monitoring and control the most important variables of flotation column operation.  In 

particular, the averaged Db (e.g. D32) can be estimated on-line and used for control purposes, via BSAF or 

gas hold-up.  The on-line evaluation and modeling of bubble size distributions, in two-phase systems, 

have been proven feasible and could be employed for process control as is, or through a sort of ‘inferred 

BSAF distribution’. Model-based control of “traditional” secondary column variables has been 

accomplished in an industrial environment, and could be implemented in industrial columns using 

available commercial sensors. Model-based control of the bubble D32, calculated from BSD 

measurements, was also achieved with excellent results in a two-phase laboratory column. 
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