
Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM'18)

Madrid, Spain – August 16 – 18, 2018

Paper No. ICMIE 102

DOI: 10.11159/icmie18.102

ICMIE 102-1

Hybridizing Ant Colony Optimization by Beam Search for the Assembly
Line Balancing Problem

Jiage Huo1, Felix T.S. Chan1, Carman K. M. Lee1, Jan Ola Strandhagen2, Ben Niu3
1Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong, China

jiage.huo@connect.polyu.hk; f.chan@polyu.edu.hk; ckm.lee@polyu.edu.hk
2Department of Production and Quality Engineering, Norwegian University of Science and Technology

NO-7491, Trondheim, Norway

ola.strandhagen@ntnu.no
3College of Management, Shenzhen University

Nanshan, Shenzhen, China

drniuben@163.com

Abstract - The type-I Assembly Line Balancing Problem (ALBP) focuses on the task assignment process with the objective of

minimizing the number of workstations for a given cycle time. With the development of complex products, the problem size and the

complexity in the assembly process is increasing. In this study, we hybridize the ant colony optimization algorithm via beam search

(ACO-BS) in order to solve the type-I ALBP, and we focus more on the large scale ALBP in order to suit to the industrial requirements.

We test ACO-BS with benchmark instances with a time limit of 360 seconds for one run, and the results show that 95.54% of the problems

can reach their optimal solutions. In addition, since we want to explore the large scale ALBP, we generate 27 instances with a total of

400 tasks (the largest number of tasks in the benchmark instances of type-I ALBP is 297) randomly basing on the complexity indicators

of order strength and processing time variation. There are three levels of order strength, 0.2, 0.6 and 0.9, and the time variation is set to

be at 5-15, 65-75 and 135-145 levels. Meanwhile, the processing times of the tasks usually follow a unimodal or bimodal distribution,

and we generate task times to follow three kinds of distribution respectively, unimodal distribution peaking at the bottom, unimodal

distribution peaking in the middle and bimodal distribution. The comparison results with solutions obtained by the priority rule

demonstrate the superiority of ACO-BS in solving large scale ALBP.

Keywords: Assembly Line Balancing, Beam Search, Ant Colony Algorithm, Benchmarking Data Set, Computational

Efficiency.

1. Introduction
An assembly line is a continuous production line consisting of materials and workstations combined with conveyor belts,

linking men and machines closely and efficiently [1]. Assembly lines are flow-oriented systems that are indispensable for

both the production of high quantity standardized products and low volume production of customized products [2]. Effective

design of assembly lines requires high investment and running costs[3], and assembly planning and control play important

roles in reducing the delivery time and costs and in increasing profitability [4].

The Assembly Line Balancing Problem (ALBP) is a well studied classic problem, and can be seen as a generalization

of the bin packing problem where precedence constraints are added [5]. It focuses on assigning tasks to workstations with

the aim of satisfying the precedence relationships among the tasks, the workload limitation of the workstations, and

optimizing the performance measures [6]. According to Becker and Scholl [7], there are four types of ALBP: SALBP-I aims

to minimize the number of workstations with a given fixed cycle time; SALBP-II minimizes the cycle time with a given

number of workstations; SALBP-E aims to minimize the cycle time and the number of workstations at the same time by

considering their relation with the total idle time or the inefficiency of the line; SALBP-F determines the feasibility of the

problem with the given number of workstations and the cycle time.

Exact methods and approximate methods have been used to solve ALBP. The required computational time for obtaining

an optimal solution with an exact method for most cases of ALBP increases exponentially with the instance size considered

mailto:jiage.huo@connect.polyu.hk
mailto:f.chan@polyu.edu.hk;
mailto:Third.Author@uottawa.ca

ICMIE 102-2

[3]. This limits the performance of exact methodologies, especially when the problem size is extremely large. Therefore,

exploring efficient heuristic methodologies to cope with large scale ALBP within an acceptable time period is clearly

necessary. Recently, meta-heuristic algorithms such as the genetic algorithm, particle swarm optimization and the ant colony

optimization (ACO) algorithm have been used to deal with ALBP due to these algorithms having good performance in

optimization [1]. Many researchers explored ALBP with ant colony based approaches, and found ACO has good performance

in solving combinatorial optimization problems [1, 8]. For example, to effectively address ALBP with complicating factors

such as parallel workstations, stochastic task times and mixed-models, McMullen and Tarasewich [8] proposed an approach

based on ant techniques and, in comparison with other heuristics, showed that the proposed method is competitive in terms

of the performance measures used in the study.

With the development of the manufacturing industry and the transformation from mass production to customization, the

complexity of the assembly process is increasing, and ALBP of complex products within an acceptable time period becomes

critical. Although much exploration has been done by researchers, the exploration of methods suiting to the complex

assembly context is critical, with the increasing complexity of ALBP. In this study, we focus more on the performance of

the algorithm on the large scale ALBP. In order to deal with ALBP in a large problem size, we hybridize the ACO with

Beam Search (ACO-BS) to improve the efficiency and improve the computational performance of the algorithm so that

satisfactory results can be achieved within an acceptable computation time.

2. Problem Description
n : total number of tasks;

UB : upper bound of the total number of workstations;









 



CtLB
n

i

i

1

: lower bound of the total number of workstations, for ni ,,1 ;

it : processing time of task i , for ni ,,1 ;

C : cycle time;

P : set of pairs of tasks  ki, such that i immediately precedes k ;

 ii SP : set of tasks that precede (succeed) i , for ni ,,1 ;


























 



CttE
iPk

kii : lower bound on the number of the workstation to which task i can be assigned, for ni ,,1

;


























 



CttUBL
iSk

kii 1 : upper bound on the number of the workstation to which task i can be assigned, for

ni ,,1 ;

Variables:

 1,0ijx 1, if and only if task i is assigned to workstations j ; otherwise, 0 (ii LEji ,,; );

 1,0jy 1, if and only if any task is assigned to workstation j (UBLBj ,,1); otherwise, 0.

The mathematical model of SALBP-I is as follows:





UB

LBj

jyjz
1

min

(1)





i

i

L

Ej

ijx 1, ni ,...,2,1 (2)

ICMIE 102-3





n

i

iji Cxt
1

, LBj ,...,2,1

(3)

j

n

i

iji yCxt 
1

, UBLBj ,...,1

(4)

 
 


i

i

k

k

L

Ej

L

Ej

kjij xjxj ,   Pki  , (5)

The objective function (1) minimizes the total number of workstations; constraint (2) suggests that every task is assigned

to one and only one workstation; workload constraints (3) and (4) imply that the total processing time of each workstation

does not exceed the cycle time; constraint (5) ensures that all the precedence relations are satisfied.

One ALBP can transfer to its reverse version after all the precedence relationships are reversed. If  mrev SSS ,,1  is

a solution for the reverse problem, then a solution for the original problem can be  1,, SSS m  . Following Bautista and

Pereira [9], we solve the original problem and the reverse problem respectively, and then two criteria are used for selecting

the best solution after solution transformation of the reverse problems: (1) number of workstations; (2) idle time in the last

workstation. The second criterion is added due the fact that there are large plateaus when only the first criterion is used, and

more idle time in the last workstation means better resource utilization for the previous workstations.

3. The Algorithm of ACO-BS
The general logic of the ACO-BS algorithm is as follows: At first, a better solution is chosen after solving the original

problem and the reverse problem respectively by the priority rule, and it is used to initialize the best-so-far solution (
bsfS).

3.1. Priority Rule

Before assigning tasks, the priority values of the tasks are computed as follows:

ini

jj

j
S

S

C

t




1max

 , nj ,,1 (6)

Starting from the first workstation, put all the tasks not assigned in a set N and set idle time to be C . Also, put tasks

with no predecessor into a set
nopreN . The assignment is implemented as follows: (1) determine available tasks. Examine

tasks in
nopreN and put all tasks with processing time equal to the idle time into the available task set avN , since saturating

the time remained of a workstation means better resource utilization. If avN is empty, tasks with no predecessor and

processing time less than the idle time are put into set avN . (2) if avN is not empty, choose a task with the highest priority

value from avN (if there is more than one task with highest priority value, choose one randomly), and go to step (3); If the

set is empty, go to step (4). (3) delete the chosen task from N and
nopreN , avN and the idle time will decrease by the

processing time of the latest assigned task. Go to step (1). (4) close the current workstation. If N is not empty, open a new

one and set the cycle time to be C , then go to step (1); if N is empty, end the procedure.

3.2. ACO-BS
The first step is used to initialized the parameters, and steps 2 to 4 are repeated within a certain time period.

Step 1: Initialization

ICMIE 102-4

Generate one solution by using the priority rule for the original and reverse problem. Then the two criteria are used to

choose a better solution to initialize the best-so-far solution. Additionally, the pheromone value is one important concept in

the ant colony algorithm, and it is used to guide the searching process for good solutions. Let
ij (njUBi  ,1;,,1 )

be the pheromone value between task j and workstation i , and all the pheromone values are initialized to be 0.5.

Step 2: Generate solutions from the original problem and the reverse one respectively by ACO-BS

Unlike the priority rule which is used for task selection, the selection rule here makes use of the pheromone values and

priority values of the tasks. Differing from the computation of the priority values used in the priority rule, the priority values

used in ACO-BS are processed as follows [10], after computing using equation (6):

max

min 1









j

j
, nj ,,1 (7)

where
jnj   1min min and

jnj   1max max .

When choosing tasks from the set avN , the probability
jp that a task is chosen by workstation k is calculated using

equation (8) by the summation rule as follows [11]. Choose a task by maximizing
jp or by roulette-wheel method which is

determined with the same possibility.

 



 























avNq

q

k

i

iq

j

k

i

ij

jp





1

1
 (8)

Partial solutions are extended by a set of tasks assigned to one workstation. In order to better illustrate the procedure of

the algorithm, we illustrate the situation for the first workstation, and then the next steps are given.

At first, task assignment for the first workstation is explored extn times, and the procedure is similar to by the priority

rule, but the task selection rule here contains pheromone values and the priority values of tasks. Let
parS be the initial empty

partial solution set, and extS be the set that stores the task sets of the last workstation of all the partial solutions. For the first

workstation, the two sets are the same. After each exploration, the task assignment for the first workstation, which is different

to those in extS and its lower bound (will be described later) is less than bsfS , are put into
parS and extS .

After the assignment of the first workstation, there will be at most extn partial solutions in
parS . One partial solution is

picked one by one, and then the following steps are repeated until extending for extn times (let m denotes the workstation

which is currently considered; extS): (1) 1ext ; mt stores the task set for workstation m . (2) Implement task

assignment for workstation m , and get the task set mt for the workstation. (3) Extend the partial solution considered by the

task set mt for workstation m . If the extended solution is a complete solution, go to step 4, else go to step (5). (4) Put the

extended partial solution to set comS which stores the complete solution. (5) If the lower bound (described below) of the

workstation needed for the partial solution is less than bsfS and mt is different from all the factors in extS , the partial

solution will be put into
parS . (6) If extnext  , end this procedure; else 1ext  ext and mt , and go to step (2).

When choosing extensions after filling one workstation, two criteria are used. First, let remN be the set of tasks not

assigned for one partial solution, and the lower bound on the workstations needed is computed as follows [2]:

ICMIE 102-5






















C

t

LB remNj

j

s
 (9)

Partial solutions are ranked by increasing the lower bound defined above. If there are ties after ranking by the first

criterion, our preference goes to partial solutions with less idle time in the last workstation (further ties are broken randomly).

Finally, for each workstation considered, there will be  parwid SB ,min generated, and widB is the width of beam.

This step is ended when there is no partial solution that can be extended. The partial solution set is empty when it is

about to open a new workstation, and the extended partial solution, which is the complete solution, is put into comS .

Step 3: Choose the iteration best solution and update the pheromone values

Since in step 2, if the lower bound of a partial solution is no less than bsfS , the partial solution is aborted. Thus there

may be no solution obtained in step 2, and then the best-so-far solution is used to update the pheromone values.

If the solution set obtained in step 2 is not empty, a iteration best solution ibS is chosen with the two criteria. ibS is then

used to update the pheromone values. Pheromone values
ij between the task j and workstation i (ibSi ,,1 ;

nj ,,1) are updated. There are two updating processes: (1) pheromone evaporation: for each
ij to be updated, there is

  ij -1 left after evaporation.  1,0 is the evaporation rate, assigned as 0.1 in this study. (2)
ij increases  when

task j is assigned to workstation i in ibS .

When a pheromone value
ij is too small, task j tends never to be assigned to workstation i ; When the value is too

large, task task j tends always to be assigned to workstation i . Consequently, the solution space is small and this may lead

to bad quality of the solutions generated. Thus, the pheromone values are restricted to the interval  maxmin , to prevent

stagnation, and 01.0min  99.0max  . If a pheromone value is larger than max after updating, it is set to be max ; if the

value is smaller than min after updating, it is set to be min .

If the iteration best solution is better than the best-so-far solution, the latter is updated by the former.

Step 4: Calculating the convergence factor

After the initialization of the pheromone values in step 1, the convergence value is 1. All the pheromone values are

initialized to be 0.5 when convergence value is less than 0.05. The convergence value is calculated as follows [10]:

 

 



























 

minmax

1 1

minmax ,min

2




bsf

n

j

S

i

ijij

Sn
econvergenc

bsf

 (10)

4. Computational Results
The ACO-BS algorithm was implemented in MATLAB, and was run on all the instances using an Intel Core i7-6700

(3.40 gigahertz) processor, with 32 gigabytes of available memory. The computation times spent on obtaining the best

solutions and the standard deviations are reported, and all running time reported are given in CPU seconds.

4.1. Results of Benchmark Instances of SALBP-I
In order to exhibit the superior performance of ACO-BS, we tested ACO-BS with benchmark instances published on

https://assembly-line-balancing.de/. There are 269 benchmark instances in SALBP-I. By using the priority rule only, optimal

solutions can be obtained for 170 instances (with 99 instances whose optimal solutions cannot be reached). After ten runs of

https://assembly-line-balancing.de/

ICMIE 102-6

ACO-BS (20,10  widext Bn) with a time limit of 360 seconds, there are 87 more instances whose optimal solutions can

be obtained. We can see from figure 1 that the values of solutions obtained by ACO-BS equal those of the optimal solutions

(see 87 positions where ‘☆’ are on the line), except for 12 instances (12 positions where the ‘☆’ are above the line, with

one isolated and 11 overlapping with ‘*’).

Fig. 1: Comparison of optimal solutions, solutions obtained by priority rule and solutions obtained by ACO-BS in 99 instances.

4.2. Generation and Results of Randomly Generated Instances

According to Scholl [12], the following three indicators can be used to measure the complexity of the ALBP instances:

(1) Order Strength (OS). OS is defined as the number of arcs in the transitive closure of the precedence graph divided by

   21 nn , that is, the maximal number of arcs in an acyclic graph with n nodes. The middle values of OS seem to be

harder than the low or high order strength values [13]. But when OS is 1 there is only one task sequence feasible; when OS

is 0, SALBP-I reverts to the bin packing problem which is also NP-hard [12]. (2) Time Variability (TV). TV is measured by

minmax tt , which reflects the time structure of one instance. A smaller TV suggests a higher complexity. We set three levels

of OS (0.2, 0.6, 0.9) and three levels of TV (5-15, 65-75, 135-145). The problem size is set to be 400. We enlarge the time

limit of one run to 720 seconds, and the width of beam and number of extensions increased to be 100 and 30.

The random instances generation consists two parts: arc generation and task times generation.

Generation of arcs. According to Otto et al. [14], the concept of stages allows for a direct manipulation of the graph

characteristics. Following Otto et al. [14] and Kolisch et al. [15], we use three steps to generate precedence arcs. Firstly, the

average number of tasks per stage is selected, and then the number of tasks per stage is generated following a normal

distribution. Next, each beginning node (with no predecessor) is assigned one successor, and each other node is assigned one

predecessor. After assignments for all the nodes, one successor is chosen randomly for those having no successor. Finally,

the second step is repeated until the expected complexity is reached. During the above-mentioned procedure, the following

aspects should be taken into account: First, there may be redundant arcs which should be deleted. According to Kolisch et

al. [15], let  AVN , be a network with node set V and arc set A , and an arc  sii ,0 is called redundant if there are arcs

 10 , ii , ...,   Aii ss  ,1 and 2s . Second, predecessors and successors of nodes can only be chosen from the previous

stage and the next stage, respectively. Last, tasks are always considered in increasing order, and the added precedence

relationships follow the topological rule.

ICMIE 102-7

Generation of tasks times. Kilbridge and Wester [16] found that task times usually follow a unimodal or bimodal

distribution. Following Morrison et al. [13], three kinds of task times are generated: (1) peak at the bottom: tasks times are

drawn from a normal distribution with the mean centered around small times; (2) peak in the middle: task times are drawn

from a normal distribution with a mean of C/2; (3) bimodal: task times are drawn from a combination of two normal

distribution with means centered around small and large times. Task times are rounded to the next integer and possible

rounding effects are compensated for by setting the default cycle time to 1000 to allow flexible time structures [14].

The OS values for three levels are 0.208, 0.607 and 0.898. Table 1 shows information of task times of randomly

generated instances. The figures in brackets are the means and standard deviations to generate a bimodal distribution.

Table 1: Statistical description of task times of random instances.

Statistical information for processing times Information for normal distributions

TV level Mean Var tmin tmax TV Distribution Mean Std.

5-15
253.902 5899.542 35 457 13.057 bottom 250 80
501.938 22247.106 63 855 13.572 central 500 150
825.698 19925.720 69 999 14.478 bimodal 250 (750) 100 (250)

65-75
251.145 6878.485 8 539 67.375 bottom 250 80
502.035 21738.550 14 985 70.357 central 500 150
816.795 23440.324 14 999 71.357 bimodal 250 (750) 100 (250)

135-145
253.125 6818.070 4 577 144.250 bottom 250 80
500.297 25632.059 7 978 139.714 central 500 150
832.472 19895.062 7 999 142.714 bimodal 250 (750) 100 (250)

The column of difference in table 2 refers to the differences between the solutions obtained by priority rule and those

obtained by ACO-BS, and this can indicate the extent to which ACO-BS improves the quality of solutions. We can see from

table 2 that the most significant tendency is that instances whose processing times follow the bimodal distribution are more

difficult, consistent with Morrison et al. [13], since for all OS levels, there are 11 instances where there is no improvement

after using ACO-BS with the time limit of 720 seconds, with solution quality of only one such kind of instance improved

(OS level is 0.2, TV level is 135-145). Besides, there are two instances where there is no improvement on solution quality,

with OS levels of 0.6 and 0.9 respectively and TV levels of 5-15 and 65-75 respectively. However, the similarity is that their

processing times are generated following the distribution peak in the middle.

Table 2: Results of randomly generated instances.

OS level TV level Distribution Priority rule ACO-BS Difference Solution Running time

avg. std. avg. std.

0.2

5-15 bottom 106 102 4 102 0 466.411 10.825
65-75 bottom 105 101 4 101 0 569.084 2.131

135-145 bottom 105 102 3 102 0 559.794 6.917
5-15 middle 217 214 3 215 1 466.249 318.705
65-75 middle 216 215 1 215.4 0.548 369.356 155.936

135-145 middle 217 213 4 213.8 1.304 305.772 106.824
5-15 bimodal 388 388 0 388 0 14.027 0.055
65-75 bimodal 382 382 0 382 0 13.947 0.067

135-145 bimodal 390 389 1 389.6 0.548 1048.546 946.530

0.6

5-15 bottom 105 102 3 102 0 535.052 2.433
65-75 bottom 104 101 3 101 0 546.670 5.939

135-145 bottom 106 102 4 102 0 535.687 4.069
5-15 middle 218 218 0 218 0 111.478 133.562
65-75 middle 220 217 3 217.6 0.548 435.175 135.772

135-145 middle 215 214 1 214.8 0.447 452.758 102.803
5-15 bimodal 388 388 0 388 0 12.368 0.929
65-75 bimodal 382 382 0 382 0 13.208 1.178

135-145 bimodal 390 390 0 390 0 12.976 1.496

ICMIE 102-8

0.9

5-15 bottom 108 102 6 102.8 0.447 543.545 236.263
65-75 bottom 106 101 5 101 0 482.360 115.202

135-145 bottom 107 102 5 102 0 275.540 1.023
5-15 middle 232 228 4 230.2 1.643 558.983 261.882
65-75 middle 232 232 0 232 0 14.075 0.045

135-145 middle 229 228 1 228.8 0.447 264.277 348.637
5-15 bimodal 389 389 0 389 0 14.141 0.059
65-75 bimodal 387 387 0 387 0 1343.375 743.422

135-145 bimodal 394 394 0 394 0 13.138 1.227

5. Conclusions
A method based on the priority rule is used at first to generate the first best so far solution. After using this method once

on the original problem and the reverse problem respectively, 63.20% of the total benchmark instances can reach the optimal

results. Based on the best so far solution obtained by the priority rule, ACO-BS searches for a larger solution space in order

to reach more optimal results. Since all the constraints of ALBP have been satisfied during the solution searching process

and then the best solution is selected, the accuracy of this method can be guaranteed. After ten runs (360 seconds limit for

each run), 95.54% of the total benchmark instances can reach the optimal results. What is more, these results are better when

increases in the width of the beam or the number of extensions are allowed, or by increasing the time limit for one run. We

can conclude that the algorithm of ACO-BS is good in solving SALBP-I. In order to further examine the performance of the

algorithm in more complicated instances, we generate large scale SALBP-I instances randomly and explore solutions for

them with ACO-BS. OS and TV are chosen to measure the complexity of the random instances. Compared with the solutions

obtained by the priority rule, there are significant improvements in the quality of the best solutions after applying ACO-BS,

which shows that ACO-BS is efficient for small scale instances as well as large scale instances. Therefore, ACO-BS is shown

to be an effective tool for solving SALBP-I of complex products.

Acknowledgements

The work described in this paper was supported by grants from The Natural Science Foundation of China (Grant No.

71471158); The Hong Kong Polytechnic University (Project No. 4-BCCM); and The Hong Kong Polytechnic University

under student account code RURR. The authors also would like to thank The Hong Kong Polytechnic University Research

Committee for financial and technical support.

References
[1] Y. G. Zhong and B. Ai, "A modified ant colony optimization algorithm for multi-objective assembly line balancing,"

Soft Comput., vol. 21, pp. 6881-6894, 2017.

[2] A. Scholl and C. Becker, "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing,"

Eur. J. Oper. Res., vol. 168, pp. 666-693, 2006.

[3] O. Battaïa and A. Dolgui, "A taxonomy of line balancing problems and their solutionapproaches," Int. J. Prod. Econ.,

vol. 142, pp. 259-277, 2013.

[4] G. Q. Huang, Y. Zhang, X. Chen, and S. T. Newman, "RFID-enabled real-time wireless manufacturing for adaptive

assembly planning and control," J. Intell. Manuf., vol. 19, pp. 701-713, 2008.

[5] T. Wee and M. J. Magazine, "Assembly line balancing as generalized bin packing," Oper. Res. Lett., vol. 1, pp. 56-

58, 1982.

[6] E. Celik, Y. Kara, and Y. Atasagun, "A new approach for rebalancing of U-lines with stochastic task times using ant

colony optimisation algorithm," Int. J. Prod. Res., vol. 52, pp. 7262-7275, 2014.

[7] C. Becker and A. Scholl, "A survey on problems and methods in generalized assembly line balancing," Eur. J. Oper.

Res., vol. 168, pp. 694-715, 2006.

[8] P. R. McMullen and P. Tarasewich, "Using ant techniques to solve the assembly line balancing problem," IIE Trans.,

vol. 35, pp. 605-617, 2003.

[9] J. Bautista and J. Pereira, "Ant algorithms for a time and space constrained assembly line balancing problem," Eur. J.

Oper. Res., vol. 177, pp. 2016-2032, 2007.

[10] C. Blum, "Beam-ACO for simple assembly line balancing," INFORMS J. Comput., vol. 20, pp. 618-627, 2008.

ICMIE 102-9

[11] D. Merkle and M. Middendorf, "An ant algorithm with a new pheromone evaluation rule for total tardiness problems,"

in Workshops on Real-World Applications of Evolutionary Computation, 2000, pp. 290-299.

[12] A. Scholl, Data of assembly line balancing problems. Techn. Hochsch., Inst. für Betriebswirtschaftslehre, 1995.

[13] D. R. Morrison, E. C. Sewell, and S. H. Jacobson, "An application of the branch, bound, and remember algorithm to

a new simple assembly line balancing dataset," Eur. J. Oper. Res., vol. 236, pp. 403-409, 2014.

[14] A. Otto, C. Otto, and A. Scholl, "Systematic data generation and test design for solution algorithms on the example of

SALBPGen for assembly line balancing," Eur. J. Oper. Res., vol. 228, pp. 33-45, 2013.

[15] R. Kolisch, A. Sprecher, and A. Drexl, "Characterization and generation of a general class of resource-constrained

project scheduling problems," Manage. Sci., vol. 41, pp. 1693-1703, 1995.

[16] M. Kilbridge and L. Wester, "The balance delay problem," Manage. Sci., vol. 8, pp. 69-84, 1961.

