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Abstract - Car suspension was studied using the Quarter Car Suspension Model, which consists of a suspension spring, a damper, and 

a tire spring that holds a quarter of a car. Applying Newton's second law to the sprung and un-sprung masses, the Quarter Car Suspension 

mathematical model was derived as a system of two coupled second-order differential equations. This system was rearranged into a 

system of four coupled first-order differential equations. Algorithms were derived to solve this system in the time domain using the 

Euler's, second-order Runge-Kutta , and fourth-order Runge-Kutta methods. Matlab was used to obtain numerical solutions and computer 

animations by varying the suspension and tire spring constants, and the damping constants for different road changes: steps, bumps, and 

holes. We found that decreasing the spring constants and increasing the damping constant improved the ride, and overall bumps are a 

little bit easier to handle than steps and holes. Larger bumps or holes are more difficult to traverse, as well as having certain bump-bump 

or bump-hole separation. For larger values of the suspension and tire spring constants, for example in heavier vehicles with large tires 

such as utility, crane, and backhoe trucks, higher order algorithms are essential to describe correctly the high-frequency oscillations of 

the vehicle suspension system. 
 

Keywords: Quarter Car Suspension, Coupled Differential Equations, Numerical Solutions, Second And Fourth Order 

Runge-Kutta, Numerical Algorithms, Computer Animations, Tire Spring, Damping; Road Holes, Road Bumps, Road Steps, 

Trucks. 

 

 

1. Introduction 
Our goal is to study a car suspension as a system of damped harmonic oscillators using Matlab. We developed an 

algorithm that solves the system of damped harmonic oscillators using the Euler's method or the Runge-Kutta's second (RK2) 

and fourth-order (RK4) methods. By varying the spring and damping constants, which describe the springs and shock 

absorber, we hope to determine what suspension is best for a given car and what is the maximum speed you can go over a 

bump so your car will not bottom out. 

The Quarter Car Suspension Model describes the mass of the axle/suspension and the wheel as a bob and spring system, 

respectively, which is coupled to the upper quarter car and suspension which are described with the upper bob, spring and 

damper, also respectively. The math description is a system of two coupled second-order ordinary differential equations 

(ODEs). 

A first-order differential equation can be solved numerically using algorithms that are written in algebraic equations 

such as the Euler's algorithm or the Runge-Kutta's second (RK2) and fourth-order (RK4) algorithms. For example, an Euler's 

algorithm can be written to solve a single or a system of two first-order differential equations. By writing the second-order 

differential equation for a damped harmonic oscillator as a system of two coupled first-order ones, it can be solved using the 

Euler's algorithm for a system of two first-order ODEs. 

Each second-order ODE was solved using two coupled first-order ODEs. The numerical solution of the Quarter Car 

Suspension Model consisted of an algorithm that solves the four coupled first-order ODEs. This system was solved using 

Euler and the RK2 and RK4 algorithms. 

 

2. Car Suspension 
There are two main types of car suspension; dependent and independent. A dependent suspension has a live axle (2 for 

four wheel drive), as well as a dead axle for trucks and vans. The axles can also be rigid to provide more stability. An 
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independent suspension is independently attached to the body or sub-frame. Different spring combinations are possible. 

When driven wheels are independently suspended, the differential is fixed to the frame and drives the wheels by joined drive 

shafts. In this paper we study one independent suspension that holds a quarter of the vehicle's weight. 

 

 
Fig. 1: This figure depicts a real example of car suspension [8], which was simulated using Matlab. 

 

3. Quarter Car Suspension Model 
3.1. Diagram 

The Quarter Car Suspension Model, see Figure 2, describes the suspension as a spring, of spring constant 𝐾𝑠, and a 

damper, or shock absorber, of damping constant b, mounted between the quarter weight of the car, of mass 𝑚2, and the 

unsprung mass, which consists of the axle, suspension, and wheel, of mass 𝑚2. The tire acts as a second spring, of spring 

constant 𝐾1, mounted between the unsprung mass 𝑚1 and the road. The vertical position of 𝑚1 is x, the vertical position of 

𝑚2 is y, while the vertical position of the road is u. Variations in the road surface will affect the suspension system changing 

the vertical positions and velocities of the masses 𝑚1 and 𝑚2, which are 𝑥(𝑡), 𝑦(𝑡), 𝑥̇(𝑡), 𝑦̇(𝑡), respectively. At any given 

time, the length of the suspension spring is (𝑦 − 𝑥), and that of the tire spring is (𝑥 − 𝑢). The length of a spring determines 

its recovery force as described by Hooke’s Law.  

When the suspension goes over a hole in the road, the system made up of 𝐾𝑠 and b is stretched. m2 is pulled down on 

(negative forces by 𝐾𝑠 and b) while m1 is being pulled up (positive forces by 𝐾𝑠 and b), Kw is stretched to pull m1 downwards 

(negative force by 𝐾𝑤). The free body diagrams of forces acting on m1 and m2 are shown in the next section. 

 

 
Fig. 2: The Quarter Car Suspension Model. 
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Fig. 3: This is a diagram of the forces acting on m1 and m2 by the car suspension system. 

 
3.2. Free Body Diagram  

When the suspension system is stretched, the net force on 𝑚2 consists of a superposition of two forces pointing in the 

downward direction: −𝐾𝑠(𝑦 − 𝑥) and −𝑏(𝑦̇ − 𝑥̇). The net force on 𝑚1 consists of a superposition of three forces, two 

pointing in the upward direction: 𝐾𝑠(𝑦 − 𝑥) and 𝑏(𝑦̇ − 𝑥̇), and the third one pointing in the downward direction: −𝐾1(𝑥 −
𝑢). The free-body diagram for each mass is shown in Figure 3. 

 

3.3. Newton’s Second Law 
According to Newton’s Second Law, the net force acting on an object of mass m equals ma, where a is the acceleration 

of the object.  

 

 𝐹𝑛𝑒𝑡 = 𝑚𝑎 (1) 

For 𝑚2 Newton’s Second law reads  

 

 
−𝐾𝑠(𝑦 − 𝑥) − 𝑏(𝑦̇ − 𝑥̇) = 𝑚2𝑦̈ 

 

(2) 

 

 𝑚2𝑦̈ + 𝐾𝑠𝑦 + 𝑏𝑦̇ = 𝐾𝑠𝑥 + 𝑏𝑥̇ (3) 

 

For 𝑚1 Newton’s Second law reads  

 

 
𝐾𝑠(𝑦 − 𝑥) + 𝑏(𝑦̇ − 𝑥̇) − 𝐾1(𝑥 − 𝑢) = 𝑚1𝑥̈ 

 

(4) 

 

 𝑚1𝑥 + 𝑏𝑥̇ + (𝐾𝑠 + 𝐾1)𝑥 = 𝐾𝑠𝑦 + 𝑏𝑦̇ + 𝐾1𝑦 (5) 

 

So the quarter car suspension is described by two coupled second order ODEs, equations (3), and (5).  
 

4. Rewriting Each Second Order ODE as a System of Two Coupled First-Order ODEs 
The system of two coupled second order ODEs derived in the previous section is now rewritten as a system of four 

coupled first order ODEs.  
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1. 

𝑥̇ = 𝑥1 

𝑥̈ = 𝑥̇1  =
𝐾𝑠

𝑚1
𝑦 +

𝑏

𝑚1
𝑦 +

𝐾1

𝑚1
𝑢 −

𝑏

𝑚1
𝑥 −

𝐾𝑠 + 𝐾1

𝑚1
𝑥 

(6) 

 

 

2. 

 

𝑥̇1 =
𝐾𝑠

𝑚1
𝑦 +

𝑏

𝑚1
𝑦1 +

𝐾1

𝑚1
𝑢 −

𝑏

𝑚1
𝑥1 −

𝐾𝑠 + 𝐾1

𝑚1
𝑥 

 

 

(7) 

3. 

𝑦̇ = 𝑦1 

𝑦̈ = 𝑦̇1  =
𝐾𝑠

𝑚2
𝑥 +

𝑏

𝑚2
𝑥 +

𝐾𝑠

𝑚2
𝑦 −

𝑏

𝑚2
𝑦 

(8) 

 

 

4. 

 

𝑦̇1 =
𝐾𝑠

𝑚2
𝑥 +

𝑏

𝑚2
𝑥1 +

𝐾𝑠

𝑚2
𝑦 −

𝑏

𝑚2
𝑦1 

(9) 

5. Numerical Solutions 
5.1. Taylor Series Expansion 
 

 

 

𝑦(𝑥 + Δ𝑥, 𝑡 + Δ𝑡) = 𝑦(𝑥, 𝑡) +
𝜕𝑦

𝜕𝑥
Δ𝑥 +

𝜕𝑦

𝜕𝑡
Δ𝑡

+
1

2

𝜕2𝑦

𝜕𝑥2
Δ𝑥2 +

1

2

𝜕2𝑦

𝜕𝑡2
Δ𝑡2 +

𝜕2𝑦

𝜕𝑥𝜕𝑡
Δ𝑥Δ𝑡

+
1

6

𝜕3𝑦

𝜕𝑡3
Δ𝑥3 +

1

6

𝜕3𝑦

𝜕𝑥2𝜕𝑡
Δ𝑡3

+
1

2

𝜕3𝑦

𝜕𝑥2𝜕𝑡
Δ𝑥2Δ𝑡 +

1

2

𝜕3𝑦

𝜕𝑥𝜕𝑡2
𝛥𝑥𝛥𝑡2 + ⋯

 

 

(10) 

 

 
y(𝑥 + Δ𝑥, 𝑡 + Δ𝑡) = ∑

𝜕𝑛+𝑘𝑦

𝜕𝑥𝑛+𝑘
∞
𝑛=0  ∑

𝜕𝑛+𝑘𝑦

𝜕𝑥𝑛+𝑘
∞
𝑘=0  

𝛥𝑥𝑛

𝑛!

𝛥𝑡𝑘

𝑘!
 

 

(11) 

 

5.2. Euler’s Method 
Euler’s algorithm results from solving the first-order ODE  

 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) (12) 

 

using a Taylor’s series expansion including terms up to first-order approximation.  

 

 𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) +
dx

𝑑𝑡
𝛥𝑡 = 𝑥(𝑡) + 𝑓 ⋅ 𝛥𝑡 (13) 

 
5.3. Higher Order Methods: Runge-Kutta 2 and 4 

Runge-Kutta 2 or RK2 algorithm results from solving the same first-order ODE, equation (12) using a Taylor’s series 

expansion including terms up to second-order approximation.  

 

 𝑎1 = 𝑓 ⋅ Δ𝑡 (14) 
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𝑎2 = 𝑓 (𝑥(𝑡) + 𝑓 ⋅

𝛥𝑡

2
, 𝑡 +

Δ𝑡

2
) ⋅ 𝛥𝑡 = 𝑓 (𝑥(𝑡) +

𝑎1

2
, 𝑡 +

Δ𝑡

2
) ⋅ 𝛥𝑡 

 

(15) 

 

 𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑎2 (16) 

 

Runge-Kutta 4 or RK4 algorithm results from solving the same first-order ODE, equation (12) using a Taylor’s series 

expansion including terms up to fourth-order approximation.  

 

 
𝑎1 = 𝑓 ⋅ Δ𝑡 

 

(17) 

 

 
𝑎2 = 𝑓 (𝑥(𝑡) ⋅

𝑎1

2
, 𝑡 +

Δ𝑡

2
) ⋅ 𝛥𝑡 

 

(18) 

 

 
𝑎3 = 𝑓 (𝑥(𝑡) ⋅

𝑎2

2
, 𝑡 +

Δ𝑡

2
) ⋅ 𝛥𝑡 

 

(19) 

 

 
𝑎4 = 𝑓(𝑥(𝑡) + 𝑎3, 𝑡 + Δ𝑡) ⋅ Δ𝑡 

 

(20) 

 

 
𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) +

1

6
(𝑎1 + 2𝑎2 + 2𝑎3 + 𝑎4) 

 

(21) 

 

These higher-order algorithms provide higher-accuracy numerical solutions without requiring more memory when using 

smaller space and time increments.  

 

6. Numerical Results and Analysis 
Damping is defined as how oscillations of a system decay after a disturbance from static equilibrium. If the damping 

constant is sufficiently high compared to the spring constant, the mass could slowly return to its rest position without ever 

overshooting. This case is called over-damped. Commonly, the mass tends to go past its starting position, and then return, 

overshooting again. With each overshoot, some energy in the system is dissipated, and the oscillations die towards zero. This 

case is called under-damped. Between the over-damped and under-damped cases, there exists a certain level of damping at 

which the system will just fail to overshoot and will not make a single oscillation. This case is called critical damping. The 

key difference between critical damping and over damping is that, in critical damping, the system returns to equilibrium in 

the minimum amount of time.  

Un-sprung weight 𝑚1 is generally defined as the weight of the vehicle’s components that are not supported by the 

springs. This includes tires, wheels, brakes, half the control arm’s weight and other components. These components are then 

(for calculation purposes) assumed to be connected to a vehicle with no sprung mass.  

Sprung weight 𝑚2 is generall defined as the weight of the vehicle resting on the springs, not the total vehicle weight. 

Calculating this requires knowing the vehicle’s sprung weight (total weight less the un-sprung mass), the front and rear roll 

center heights and the sprung center of gravity height (used to calculate the roll moment arm length).  

𝐾𝑠 is the suspension spring constant, 𝑏 is the damping constant, and 𝐾1 is the tire spring constant.  

I studied the suspension response for different road changes: step, bump, and hole, bump-bump, bump-hole, with 

different heights and separations. shown in Figures 6, 8, 10,11, and 12 respectively. Steps and bumps are defined with a 

positive step amplitude, while holes are defined with a negative step amplitude.  

Analysis: An increase in the mass 𝑚2 causes a larger increase in position and velocity compared to the changes in the 

unsprung mass 𝑚1. Through the Matlab program we can assume optimal results for a car with standard wheels and 

suspension. This evidence is supported by the numerical results shown below, which I tested in the experimental phase of 

the project. The sprung mass 𝑚2, when adjusted, has a more comfortable ride than when 𝑚1, the unsprung mass is adjusted. 

The most comfortable results come from adjusting the damping constant 𝑏.  
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Numerical values used to vary 𝐾𝑠, 𝑏, and 𝐾1 for the first three road changes are listed in Table 1. Values for 𝑚2, and 𝑚1 

were 500, and 10, respectively. Their initial positions are 3, and 2.9, respectively.The initial velocities are assumed 0. The 

simulation time runs between 0 and 25. Numerical solutions for these values for step, bump, and hole in the road are plotted 

in Figures 5, 7, and 9, respectively. For all three road changes, increasing the suspension spring constant 𝐾𝑠 or the tire spring 

constant 𝐾1 causes an increase in the oscillation frequency of the unsprung mass 𝑚1 and a rise in its position. This would 

cause an unsafe ride as 𝑚1 may collide with 𝑚2, resulting in a bottom-out effect. A decrease in the tire spring constant 𝐾1, 

which can be achieved with a lower tire pressure, will improve the ride in detriment of the gas mileage. Among the three 

road changes, it is slightly easier to handle a bump vs. a hole or a step. Increasing the damping constant 𝑏 decreases the 

number of oscillations of the unsprung mass and lowers its position, preventing any collision between 𝑚1 and 𝑚2, improving 

the ride.  

Going more into depth we found the numerical solutions for Figures 11-12 for the bump, bump-bump, and bump-hole 

road changes. For these the default values of 𝐾𝑠, 𝑏, 𝐾1, 𝑚2, and 𝑚1 stayed the same, while the separation between bump-

bump, and bump-hole, and the height of the bump or hole were manipulated. The results of these road changes, shown for 

each mass and algorithms (top=positions, bottom= velocities), indicate that it is more difficult to go over bumps or holes 

with a larger amplitude, or having separation closest to the length between the car suspension front to back.  

To more clearly show the difference in accuracy of the Euler, RK2, and RK4 algorithms, the time step was increased 

from 0.1 to 0.2, reducing the number of steps by half. The accuracy of Euler’s method for this time step is reduced compared 

to those of the higher order algorithms, with the results farther away from each other around the local extremes of the velocity 

curves. 

 
Table 1: Values for 𝑲𝑠, b, and 𝑲1 used in the numerical solution of the quarter car suspension model. 𝒎1 = 10 and 𝒎2 = 500. Initial 

positions for 𝒎2 and 𝒎1 are 3 and 2.9, respectively. Initial velocities are 0. Final time is 25. 

 

 
 

 
Fig. 4: Short movie clips were made that show the motion of the car and its axle/suspension as it hits different types of obstacles in the 

road. 
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Fig. 5: Positions and velocities of 𝑚1 and 𝑚2 when 𝐾𝑠, b, and 𝐾1 are varied respectively, when the vehicle hits a step in the road whose 

profile is shown in the next figure. 

 

 
Fig. 6: Profile of a step in the road used in the numerical solution of the car suspension model whose results are shown in the previous 

figure. 
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Fig. 7: Positions and velocities of 𝑚1 and 𝑚2 when 𝐾𝑠, b, and 𝐾1 are varied respectively, when the vehicle hits a bump in the road 

whose profile is shown in the next figure. 

 

 
Fig. 8: Profile of a bump in the road used in the numerical solution of the car suspension model whose results are shown in the previous 

figure. 
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Fig. 9: Positions and velocities of 𝑚1 and 𝑚2 when 𝐾𝑠, b, and 𝐾1 are varied respectively, when the vehicle hits a hole in the road whose 

profile is shown in the next figure. 

 

 
Fig. 10: Profile of a hole in the road used in the numerical solution of the car suspension model whose results are shown in the previous 

figure. 
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Fig. 11: Positions and velocities of when the vehicle hits a bump in the road, or two bumps or a bump then a hole, with a separation of 

2 and step amplitude of 1.5. 

 

 
Fig. 12: Positions and velocities, when the vehicle hits a bump in the road, or two bumps or a bump then a hole, with a separation of 10 

and step amplitude of 3. 
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7. Animations 
Since our method solves the suspension model in the time domain, animations are made of the coupled motions of the 

car and its axle/suspension as it hits different types of obstacles in the road. An example was shown in Figure 4. 

 

8. Conclusion 
Car suspension was studied , using the Quarter Car Suspension Model, which consists of a suspension spring and damper 

(coil and shock absorber) between the sprung mass (body of the car where passengers are seated) and the un-sprung mass 

(half-axle, suspension, and wheel), in series with tire spring between un-sprung mass and the road. Newton’s Second Law 

for the sprung and un-sprung masses lead to a system of two coupled second-order differential equations (ODEs). The system 

is rewritten as a system of four coupled first-order differential equations. The system was solved numerically in the time 

domain using the Euler’s leapfrog method for first-order ODEs. After studying the results using road conditions such as 

steps, bumps, and holes the following observations were made: using a smaller suspension spring and tire spring constant, a 

larger damping constant, those values leading to less oscillations of the un-sprung mass. RK2 and RK4 were implemented 

and compared with Euler’s method for different bump height, bump-bump, and bump-hole interactions. The advantage of 

the higher order methods were clearly seen at larger time steps and around the local extremes of the velocity curves. The 

results agreed with the intuition that it was more difficult to go over taller bumps or deeper holes, or having bump-bump or 

bump-hole separation that is closest to the length between the front and back car suspension. Future work will include the 

study of the effect on the vehicle’s speed limit to avoid the bottom-out scenario, and the study of four interacting Quarter 

Car Suspensions for a given vehicle. 
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