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Abstract – A nearly-orthogonal boundary-conforming grid generation technique based upon inhomogeneous elliptic partial differential 

equations is presented. The method has been designed to generate grids for multiply-connected domains in a block-structure fashion. It 

also allows for control of point distribution along boundaries, as well as control of grid spacing inside the domain by using a slightly 

modified version of the renowned Thompson’s control functions, which is reported to work well. Although not fully-automatic, the 

process is automatized in order to make it more usable and speed-up computational time, which is usually a demotivating factor in elliptic 

grid generation techniques. This is also the reason why the implementation has been performed in an objected-oriented fashion using 

C++ and as relaxation method the Alternating Direction Implicit (ADI) with 𝛼-sequence, generating appealing results. The method 

presented can be fully extended to 3D. Some results are presented and discussed. 

 

Keywords: Boundary-conforming coordinate systems, Inhomogeneous elliptic partial differential equations, Nearly-

orthogonal grid. 

 

 

1. Introduction 
Grid generation can be understood as the process to obtain an adequate collection of points at which a system of 

equations is to be discretized and solved. In this context, an “optimum” point collection is desirable such that it minimizes 

the error in the solution. One possible way to obtain an optimized arrangement of points is by the use of boundary conforming 

coordinate systems, which is the reason why they have become very popular. Boundary-conforming coordinate systems are 

achieved by determining the values of the coordinates inside the physical region from the values and/or slopes of such 

coordinate lines on the boundaries. Classical approaches, such as algebraic interpolation and conformal mapping, are 

potential candidates, especially considering that such methods usually lead to great simplicity of implementation and low 

computational cost. Regarding algebraic interpolation methods, it has been pointed out that such methods may penalize 

applications for complex geometries, for example, collapsing lines of the same curvilinear coordinate [1]; “transfinite 

interpolation methods” have become popular as initial condition for more sophisticated generators, as reported in [2] and [3], 

among others. The foundations of algebraic interpolation methods in grid generation may be found in [4] and [5]. Conformal 

mapping has also been widely used as a grid generation technique in early aircraft design, and references may be found in 

[6]. As pointed by Ryskin and Leal [1], conformal mappings are ill-conditioned in the sense that very small changes in the 

shape of the domain can dramatically alter the position of mapped boundary points. On the other hand, in conjunction with 

a partial differential equation, such problem configures a boundary value problem, and obtaining the grid points as the 

solution of such a problem is a viable alternative [7]. In fact, the smoothness inherent in harmonic functions, and the 

uniqueness of the solution guaranteed by the maximum principles, tend to force that discontinuities and/or strong slopes 

present in the boundaries do not propagate inside the domain, what is desired for diminishing truncation errors in finite 

difference approximation for derivatives, as shown by Thompson et al. [8]. The authors still emphasize that, although the 

extremum principles may be weakened, or may even not be achieved by using more general elliptic systems (inhomogeneous 

systems), the conditions necessary for the extremum principles consist on a set of sufficient, but not necessary, conditions 

for a one-to-one mapping. Thus, as systems in the absence of control functions will originate grids that are not in general 
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orthogonal to the boundaries, as well as with no control over grid spacing, it becomes more convenient to use inhomogeneous 

elliptic generators, such as 

∇2𝜻 = 𝒁(𝜻), (1) 

 

where 𝜻 = (𝜉, 𝜂)𝑡 and 𝒁 = (𝑃, 𝑄)𝑡. Equation (1) corresponds to the following equation in the computational domain 

 

𝑎22𝒓𝜉𝜉 − 2𝑎12𝒓𝜉𝜂 + 𝑎11𝒓𝜂𝜂 + 𝐽2(𝑃𝒓𝜉 + 𝑄𝒓𝜂) = 0, (2) 

 

where 𝒓 = (𝑥, 𝑦)𝑡. The coefficients 𝑎11, 𝑎12 and 𝑎22 in Eq. (2) are called the covariant metric coefficients, and are defined 

by 𝑎11 = 𝒓𝜉 ⋅ 𝒓𝜉, 𝑎12 = 𝒓𝜉 ⋅ 𝒓𝜂, and 𝑎12 = 𝒓 𝜂 ⋅ 𝒓𝜂; 𝐽 is the Jacobian of the coordinate transformation, and naturally 

corresponds to 𝐽2 = 𝑎11𝑎22 − (𝑎12)2. Such system was originally proposed by Thompson, Thames and Mastin [9], reason 

why it is known as TTM method. Finally, it is important to emphasize that, although some might consider grid generation a 

solved issue, this is not really true for some specialized applications [10]. An example is the case of multiply-connected 

domains with heterogeneous media; this is accentuated by fact that recent works have been addressing the subject, such as 

[10] and [11]. This is the primary reason for the interest in the present work. As pointed by Gordon and Hall [5], since mesh 

generation usually involves both geometry and physics, and “automatic” grid generation methods consider only geometric 

aspects, we refrain from calling “automatic” such methods since the actual final mesh will ultimately be resolved by the 

analyst who is cognizant of its specific application. 

 

2. Methodology 
2.1. Contour Orthogonality 

In the solution of problems of interest in computational fluid dynamics, orthogonality or near-orthogonality next to 

boundaries are usually desirable, since according to [11], the accuracy on the discretization and boundary condition 

imposition is greatly improved. In case of a boundary corresponding to a wall, orthogonality and reduced grid spacing next 

to the wall are necessary in order to diminish the errors in the calculation of the large gradient of properties present in the 

boundary layer. Moreover, orthogonal or near-orthogonal grids allow the implementation of algebraic turbulence models to 

become more reliable, once the information normal to the boundary is usually needed in such models. According to [12], 

boundary orthogonality can be effected in two ways. In Dirichlet-Neumann orthogonality, control functions are not 

necessary. In this case, the points along the boundary are allowed to slide until boundary orthogonality is achieved, and the 

elliptic system has iterated to convergence. This approach is typically recommended for non-physical contours, such as far 

field boundaries, once it usually modifies the grid spacing near the boundary. In Dirichlet orthogonality, control functions 

are used to promote orthogonality next to the boundaries while the initial distribution of points along the boundary is kept 

constant. Zhang et al. [10] explain that, compared to Dirichlet orthogonality, Dirichlet-Neumann orthogonality is more 

difficult to use especially for cases with complex boundaries. According to [13], strictly boundary orthogonal grids, obtained 

from imposition of Dirichlet-Neumann orthogonality, can only be generated with partial control over the mesh spacing, while 

nearly-orthogonal grids allow for total control of the mesh spacing; these are obtained using Dirichlet orthogonality.  

The iterative procedure necessary in elliptic grid generation methods require an initial grid to start with. Although 

algebraic generators are usually chosen for the initial grid, due to its low computational cost and ease of implementation, 

such methods may incur in grids with overlap of lines of the same curvilinear coordinate, which may not be problematic for 

elliptic generator of Laplace type, but may characterize a source of problems for an inhomogeneous generator since, as 

pointed by [14] and [15], in this case the range of initial conditions that would lead to convergence is substantially reduced. 

Parabolic grid present characteristics which combine smoothness and mesh generation capacity with all contours specified, 

inherent in elliptical generators, with the efficiency of hyperbolic generators. Thus, the method chosen for obtaining the 

initial grid is the parabolic grid generation technique proposed by Noack and Anderson [16], due to its advantages, such as 

smoothness and no grid folding, at an encouraging computational cost. On the other hand, an intrinsic characteristic of the 

initial parabolic grids is not allowing for control of coordinate spacing in all directions. As a consequence, the method 



 

 

 

 

 

 

 

HTFF 101-3 

proposed by Khaymaseh and Mastin [17] for calculating the orthogonal functions during the iterative process had to be 

modified, once it keeps the line spacing of the initial grid. The full technique will be presented in a forthcoming article. 
 
2.2. Relaxation Procedure, Implementation and Internal Functions 

Computational cost for elliptic grid generation is a decisive issue that has been also reported by [10] and [13]. In the 

present work, in order to address computational cost issues, the following aspects have been emphasized: 1) The 

implementation has been performed in an object-oriented fashion using C++; 2) The Alternating Direction Implicit (ADI) 

method, proposed in [18] and [19], has been used as relaxation method; and 3) 𝛼-sequence, as described in [20], have been 

used in order to accelerate convergence. Moreover, the internal function calculation process is somewhat automatized in 

order to make it more usable and speed-up computational time. A slightly modified version of the renowned Thompson’s 

control functions is used [19]. Furthermore, the method presented can be fully extended to 3-D, in which case the 

computational costs become even more important. About the use of object-oriented programming, the standard approach 

(which is well documented) has been used, and no further observations are necessary. With regard to ADI method, it has 

been implemented as proposed in the cited series of articles by Ballhaus et al. [18], [19]. Complementary information, such 

as a Von-Neumann stability analysis, a discussion regarding the use of the 𝛼-sequence, as well as relevant usages may be 

found in [20] and [21]. The internal function calculation process is addressed in the following section. 

 
2.3. Internal Functions Calculation 

As pointed by [12], refined grids may be necessary to solve with precision the large gradients present in boundary layers 

and, although the elliptic generator system with orthogonality on boundaries provides for good characteristics in terms of 

smoothness and orthogonality, it may be still necessary to control the grid spacing. Thompson et al. [22] proposed exponential 

control functions that have been reported to provide efficient control over the grid spacing. As argued by Thompson et al. 

[8], the exponential control functions (the internal functions) may have to present absolute values significantly large to 

produce expressive effects on the grid. Larger amplitudes of the control functions may impact negatively on convergence. 

This is explained in [14], which also explains that large amplitudes may restrict possible initial conditions that lead to 

convergence. The internal control functions used here are a slightly modified version of those proposed in [8]. The basic idea 

is to work around the problem at hand by “normalizing” the author’s functions. To understand the methodology, consider 

the following inhomogeneous elliptic system which, similarly to Eq. (1), has also been widely used for grid generation [15], 

 

∇2𝜉 =
𝑎22

𝐽2
 𝑃(𝜉, 𝜂); 

∇2𝜂 =
𝑎11

𝐽2
 𝑄(𝜉, 𝜂). 

(3) 

 

According to [8], the control functions for this system are allowed to assume values orders of magnitude smaller than 

the ones in system Eq. (1) for similar effects. Comparing Eq. (1) with Eq. (3) makes it obvious that multiplying the functions 

P and Q in Eq. (1) respectively by 𝑎22/𝐽2 and 𝑎11 = 𝐽2 allows the coefficients inputted by the user (the decay parameters) 

to be the same as if the system Eq. (3) was being used. The only drawback is that the computational cost for calculating the 

internal control functions is slightly increased. Thus, the functions used here are of the form 

 

𝒁𝑰(𝜉, 𝜂) = −𝑨 {∑ 𝐚𝑖sgn(𝜻 − 𝜻𝑖)

𝑛

𝑖=1 

exp(−𝐜𝑖|𝜻 − 𝜻𝑖|) + ∑ 𝐛𝑗sgn(𝜻 − 𝜻𝑗)

𝑛

𝑖=1 

exp [−𝐝𝑗√(𝜉 − 𝜉𝑗)
2

+ (𝜂 − 𝜂𝑗)
2

]}, (4) 

 

where 𝑨 = (𝑎22/𝐽2, 𝑎11/𝐽2). The decay parameter inputted by the user are 𝐚𝑖 = (a𝑖
1, a𝑖

2)
𝑡
, 𝐛𝑗 = (b𝑗

1, 𝑏𝑗
2)

𝑡
, 𝐜𝑖 =

(c𝑖
1, 𝑐𝑖

2)
𝑡
 and 𝐝𝑗 = (d𝑗

1, 𝑑𝑗
2)

𝑡
. Additionally,  
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sgn(𝑥) = {
1, if 𝑥 > 0;
0, if 𝑥 = 0;

−1, if 𝑥 = 0.
 (5) 

 

It should be noted that the modification does not change the way 𝒁𝐼 works and how it affects the grid, which is well 

described in [22]. Thompson et al. [2] provide for a particularly good description of how to use the internal control functions 

to control the grid, which is summarized here. For 𝑃𝐼, the first term in Eq. (4) attracts 𝜉-lines to the ones specified by the 

user, 𝜉𝑖, with amplitudes determined by a𝑖
1. The effect of the term containing b𝑗

1 is to attract 𝜉-lines to the point (𝜉,𝜂), inputted 

by the analyst; the amplitudes are determined by the coefficients b𝑗
1, also selected by the analyst. It should be noted that the 

attraction to a point consists of attraction to the line (in this case, the 𝜉𝑖-line) where the point lies on. As such, the gravitation 

occurs perpendicularly to the refereed line on the point. There is no attraction to an 𝜂-line through 𝑃𝐼. In each case, the 

extension of the region affected by the gravitation is determined by the decay factors c𝑖
1 and d𝑗

1 , respectively. sgn is necessary 

so that the pulling effect occurs in both sides of the respective line or point. If sgn is not used, the gravitating effect occurs 

on the side of increasing 𝜉, while the exact opposite occurs in the other side. Additionally, this function causes 𝑃𝐼 and 𝑄𝐼 to 

be discontinuous functions. Consequently, in regions under the effects of 𝒁𝐼, coordinate lines and their first derivatives are 

continuous, but second-order derivatives are not necessarily continuous. Besides, decay parameters with negative values 

occasion the reversion of effects, that is, attraction becomes repulsion and vice-versa. The effect of 𝑄𝐼 to 𝜂-lines is analogous. 

It should also be mentioned that 𝑃𝐼  and 𝑄𝐼  from Eq. (4) are also compatible with the methodology proposed by [7].  

The methodology proposed by Fletcher (1996) for imposing the internal control functions after the system has converged 

with 𝒁𝑰 = 0 has been automated as follows. The user is required to input the number of times the system will be iterated 

until it reaches convergence, called 𝐸𝐼 for external iterations. For each external iteration, 𝒁𝑰 have its decay parameters 𝐚𝑖 

and 𝐛𝑗 multiplied by (𝑛𝑒 −  1)/𝐸𝐼 (ne is the current external iteration number), and the system with the current 𝒁𝑰 is iterated 

until convergence is obtained; the converged solution is used as initial condition for the next external iteration. The process 

is repeated from 𝑛𝑒 =  1 until 𝑛𝑒 =  𝐸𝐼 + 1, in order that for the first external iteration, the system is iterated with 𝒁𝑰 = 0, 

and for the last external iteration 𝐸𝐼 +  1, the system is iterated with the coefficients for 𝒁𝑰 inputted by the user, necessary 

to obtain the final grouping of points and/or lines. Finally, the merge of internal and orthogonal control functions will be 

presented in a forthcoming article, with the full methodology. 

             

3. Results 
The grids are evaluated based upon two standard academic criteria, namely, orthogonality and smoothness, represented 

respectively by the following indicators: deviation from orthogonality and grid aspect ratio, as proposed in [10]. Figure 1 

presents the grid obtained with the present method for a geometry corresponding to fins in a multimode heat transfer 

calculation problem. The domain is defined by 0.4 − 0.2[1 −  4.5𝑦(1.5 −  𝑦)] ≤  𝑥 ≤  0.6 + 0.2[1 − 4.5𝑦(1.5 − 𝑦)] and 

0 ≤ 𝑦 ≤ 0.46 +  𝑥(1.0 −  𝑥). Uniform distribution of boundary points was adopted. For the present case, the grid size is 

500 × 50 𝑐𝑒𝑙𝑙𝑠, with a maximum aspect ratio of 7.1 and maximum deviation from orthogonality of 48 deg; in this case, 

average deviation from orthogonality is of 28 deg, and average aspect ratio is of 2.0. Figure 2 illustrates orthogonality by 

means of color field representations for the mesh of Fig. 1. Grid lines are omitted in favor of clarity. As may be seen in Fig. 

2, deviation from orthogonality at the boundaries is minimum, except close to the right and left bottom corner regions, which 

is delicate due to the geometry. Naturally, deviation in such regions is expected due to the conformability requirement. In 

such regions, the internal functions have been used combined with the smoothing functions to avoid the strong spreading 

tendency reported for example by [10]. Although the mesh quality is lower in such regions compared to the rest of the 

domain, this does not raise concern, since for the current application, it corresponds to a region symmetry with low gradients 

of properties expected.  Figure 3 illustrates aspect ratio by means of color field representations for the mesh of Fig. 1. As 

expected, boundary curvature differences are not present in grids obtained with the current method, this is, the boundaries 

are perfectly fitted. It should be emphasized that the parabolic initial grid presented no grid folding.  
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In all the cases presented, the convergence criterion adopted is that the 𝐿∞-norm of the difference between current and 

past iterations values of the coordinates in the physical space is smaller than 10−11, that is ||𝒓𝑛 − 𝒓𝑛−1||
∞

≤ 10−11. 

  

 

 
Fig. 1: Nearly orthogonal elliptic grid for fins. 
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Fig. 2: Color field representation of orthogonality for grid of Fig. 1. 

 

 
Fig. 3: Color field representation of aspect ratio for grid of Fig. 1. 

 

 



 

 

 

 

 

 

 

HTFF 101-7 

4. Conclusions 
In CFD analysis and mesh generation, complex geometries remain a challenge. In this study, that is the mainly concern. 

The mapping problem regarded as the most difficult in the literature, corresponding to the construction of a coordinate system 

fitted to a boundary of given shape, with a prescribed distribution of coordinate nodes along this boundary is addressed. The 

method proposed consists of an inhomogeneous elliptic system designed envisioning flexibility and reliability. The mapping 

technique proposed provide a method for the construction of a boundary-fitted coordinate system, nearly-orthogonal to the 

boundaries, in two dimensions; the method can be extended to 3D. The inhomogeneous terms are used in two ways: first, to 

obtain the near-orthogonality along the boundaries and two, to allow grid clustering inside the domain. In the last case, a 

simple modification on Thompson’s control functions confirmed the expectations, simplifying the choice of the decay 

parameters by the user. As a drawback, the meshes obtained are not in general orthogonal over the entire domain, which may 

be desired in some applications. On the other hand, the flexibility obtained with the method is certainly an interesting asset, 

especially for complex geometries. Also, grids with Dirichlet boundary conditions are obtained, allowing the boundary point 

distribution to be controlled by the analyst. As commented, inhomogeneous elliptic generation systems are sensible to initial 

conditions, reason why a parabolic generation method has been chosen, which has proved to work fairly well. With regard 

to computational cost, the Alternating Direction Implicit scheme, with the appropriate 𝛼-sequence, has shown to be an 

interesting choice, in special given the necessity of internal control functions for grid clustering, and mostly in case of a 3D 

application. Although not fully-automatic, the method has the advantage of allowing the analyst, who is cognizant with the 

specific application, to use its best judgment in order to obtain an optimized grid to the problem. The results have shown that 

boundary-nearly-orthogonal grids, with control over point distribution along boundaries, as well as control of point and line 

spacing inside the domain, can be obtained with the method proposed at a reasonable computational time. 
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Nomenclature 

𝐴 Diagonal matrix with non-zero terms 𝑎22/𝐽2 and 𝑎11/𝐽2 

𝑎𝑖𝑗 Covariant metric tensor; components of the covariant metric tensor  

𝐚𝑖 Decay parameter for the internal control functions  

𝐛𝑗 Decay parameter for the internal control functions  

𝐜𝑖 Decay parameter for the internal control functions  

𝑑𝑗 Decay parameter for the internal control functions  

𝑖, 𝑗 Used as subscripts for the discrete coordinates 𝜉 and 𝜂 respectively 

𝐽 Jacobian of the coordinate transformation 

𝑛 Used as superscript to denote current iteration 

𝑃 Control function 𝑃 

𝑄 Control function 𝑄 

𝑥, 𝑦 Cartesian coordinates  

𝒁 = (𝑃, 𝑄)𝑡 Vector of control functions 
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𝜉, 𝜂 General curvilinear coordinates of the computational domain 

 𝛇 = (𝜉, 𝜂)𝑡 Vector of coordinates in the computational domain 
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