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Abstract - In an effort to ensure the robustness and numerical stability of a three-dimensional explicit compressible code for all speed 

flows, a preconditioning technique was implemented. The code solves Euler steady-state equations into a three-dimensional flow. Local 

preconditioning was implemented due to their accuracy in predicting lift and drag forces on mixed flows. However, for low speed flows 

near stagnation points numerical perturbations are amplified, generating a loss in the convergence rate, code accuracy and robustness. 

Aiming to improve the preconditioning accuracy and convergence rate suggested a new limit to the preconditioning sensor based on the 

flow pressure. Numerical simulations of a subsonic flow over a cylinder showed a faster convergence rate when the preconditioning 

technique was implemented. 
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Nomenclature 

𝑄 Vector of conservative variables 

𝐸𝑒 , 𝐹𝑒 , 𝐺𝑒  Flux vectors 

𝐴, 𝐵, 𝐶 Jacobian matrix of flux vectors 

𝐼 Identity matrix 

𝑢, 𝑣, 𝑤 Velocity in Cartesian coordinates 

𝜌 Density 

𝑝 Pressure 

𝑇 Temperature 

𝑎 Sound speed 

𝐸 Total stagnation energy 

𝑒 Internal energy 

𝛾 Ratio of specific heats 

𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 Normal vector unit in Cartesian coordinates 

𝛼 Free parameter constant 

𝛽 Preconditioning sensor 

𝑀 Mach number 

 

 

1. Introduction 
Advances in Computational Fluid Dynamics (CFD) in the last two decades increased the accuracy of numerical 

solutions. Difficulties to solve compressible equations for mixed speed regimes were observed by several authors [1-7]. The 

preconditioning techniques were created to ensure the robustness and stability of compressible codes for all speed flows.  

The first author which studied the stiffness in the convergence to solve compressible codes for low Mach number flows 

was Chorin [1]. The author demonstrated that the low convergence rate was caused by the large disparity between the acoustic 

wave speed and the waves propagating at the fluid speed. Aiming to solve that Chorin created the artificial compressibility 
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technique which consists in added the pressure time derivative in the continuity equation acquiring a symmetric 

hyperbolic system to ensure the solution convergence, however, the time accuracy was lost. 

Following the proposed by Chorin [1], Choi and Merkle [2] and Turkel [3] modified the artificial compressibility 

technique, adding the pressure time derivative in the momentum equations, that was named preconditioning. With that, 

the system condition number is altered to be independent of the flow Mach number ensuring the numerical solution 

convergence and preserving the solution accuracy. 

As the preconditioning matrix multiplies the spatial operator are modified the solution eigenvalues and eigenvectors. 

More studies of preconditioning techniques are looking to change the eigenvalues to obtain a symmetric system reducing 

the spread of the characteristics speed [8-12] then the preconditioning matrix should be chosen for each case. Turkel [8] 

and Allmaras [9] demonstrated that the code based on the primitive variables provides a fast convergence rate and 

decreases the numerical instabilities for low-speed flows. Using this idea, the authors proposed a new preconditioning 

matrix (P) which also modifies the solution dependent variables, getting improvements in the code robustness decreasing 

the stiffness in the convergence rate [10-12].  

Darmofal and Schmid [13] applied three local preconditioners of Lee [6], Turkel [8], and Allmaras [9] in the Euler 

equations. The preconditioning systems of van Leer and Turkel demonstrated a transient perturbation growth near 

stagnation points, due to the eigenvectors non-orthogonality at low Mach numbers. Although, the block-Jacobi 

preconditioner [13] does not amplify the perturbations the preconditioner does not accelerate the convergence due to the 

long wavelength mode when the Mach number goes to zero. Then, modifications are suggested in the van Leer and 

Turkel's preconditioners and in their sensor (β), as a function of the flow Mach number, improving the robustness of the 

upwind finite volume code. 

In the work of Turkel, Vatsa, and Radespiel [14] pointed out problems in calculating lift and drag coefficients in 

wing profiles for flows with Mach numbers lower than 0.1 to a multigrid algorithm. To solve that, they created a new 

preconditioning matrix based on Turkel [8] for compressible codes and developed a new preconditioning sensor (β) with 

a simple cut-off, which calculates this sensor for all control volumes. Predictions of lift and drag coefficients are 

improved as the convergence rate for mixed speed flows. 

Darmofal and Siu [15] made a Fourier analysis in the Turkel's preconditioning [8] in two-dimensional Euler 

equations through a multigrid algorithm. They established a new limit to the preconditioning sensor to ensure the balance 

between the eigenvalues and the flow speed, and modify the upwind flux function in the preconditioning. As a result, it 

decreases the numerical amplifications near stagnation points improving the code robustness. 

In this paper, the preconditioning technique was applied in a three-dimensional explicit compressible code 

developed by Tomita [16] to solve Euler equations. The preconditioning of Turkel, Vatsa, and Radespiel [14] was 

applied due to the ability to solve flows with mixed speed regimes. As local preconditioners when the free stream Mach 

number is close to zero could be shown near stagnation points or in regions with the significant low-speed flow, 

inaccurate solutions due to the transient amplification of perturbations. Concerning a more robust preconditioning 

technique was applied a new limit to the preconditioning sensor and an explicit flux function proposed by Darmofal and 

Siu [15]. The numerical simulations for the inviscid flow are done in a flow over at cylinder. First, in the compressible 

case, the flow Mach number is set 0.17 and, next to the incompressible case the flow Mach number is set 0.05. The 

changes in the preconditioning technique demonstrated improvements in the convergence rate for low Mach number 

flows.  

 

2. Mathematical Formulation 
Eq. (1) shows a vector form of the 3D Euler equations,  

 

∂�⃗� 

∂𝑡
=  − [

∂𝐸𝑒
⃗⃗⃗⃗ 

∂𝑥
+

∂𝐹𝑒
⃗⃗  ⃗

∂𝑦
+

∂𝐺𝑒
⃗⃗⃗⃗ 

∂𝑧
], (1) 

 

Where, �⃗�  is the vector of conservative variables �⃗� , 𝐹 , and 𝐺  are the flux vectors and, the subscript 𝑒 indicates the 

inviscid part (Euler),  
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�⃗� =  

[
 
 
 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸]

 
 
 
 

, 𝐸𝑒
⃗⃗⃗⃗ =  

[
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝜌𝐸 + 𝑝)𝑢]
 
 
 
 

, 𝐹𝑒
⃗⃗  ⃗ =  

[
 
 
 
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝜌𝐸 + 𝑝)𝑣]
 
 
 
 

, 𝐺𝑒
⃗⃗⃗⃗ =  

[
 
 
 
 

𝜌𝑤
𝜌𝑤𝑢
𝜌𝑤𝑣

𝜌𝑤2 + 𝑝
(𝜌𝐸 + 𝑝)𝑤]

 
 
 
 

 

 

The variables are dimensionless, ρ is the flow density, 𝑢, 𝑣, and 𝑤 are velocity in Cartesian coordinates, 𝑝 is static 

pressure, and 𝐸 is total stagnation energy defined by Eq. (2),  

 

E =  e + 
1

2
(𝑢2 + 𝑣2 + 𝑤2) 

(2) 

 

 

Writing the normal flux of the E, F, and G vectors in function of the Jacobians 𝐴 = 𝜕𝐸𝑒 𝜕𝑥⁄ , 𝐵 = 𝜕𝐹𝑒 𝜕𝑦⁄ , and 𝐶 =
 𝜕𝐺𝑒 𝜕𝑧⁄  resulted in,  

 

𝐷𝑛 = 𝐀𝑛𝑥 + 𝑩𝑛𝑦 + 𝑪𝑛𝑧 (3) 

 

where, 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧, correspond to the normal vector 𝒏 defined as 𝒏 = [𝑛𝑥 𝑛𝑦 𝑛𝑧]𝑇. The matrix 𝐷𝑛 is, 

 

𝐷𝑛 = 

(

 
 
 

0 𝑛𝑥 𝑛𝑦 𝑛𝑧 0

𝜃 2⁄ 𝑞𝑛
2𝑛𝑥 − 𝑢𝑞𝑛 𝑢𝑛𝑥 − 𝜃𝑢𝑛𝑥 + 𝑞𝑛 𝑢𝑛𝑦 − 𝜃𝑣𝑛𝑦 𝑢𝑛𝑧 − 𝜃𝑤𝑛𝑧 𝜃𝑛𝑥

𝜃 2⁄ 𝑞𝑛
2𝑛𝑦 − 𝑣𝑞𝑛 𝑣𝑛𝑥 − 𝜃𝑢𝑛𝑦 𝑣𝑛𝑦 − 𝜃𝑣𝑛𝑦 + 𝑞𝑛 𝑣𝑛𝑧 − 𝜃𝑤𝑛𝑦 𝜃𝑛𝑦

𝜃 2⁄ 𝑞𝑛
2𝑛𝑧 − 𝑤𝑞𝑛 𝑤𝑛𝑥 − 𝜃𝑢𝑛𝑧 𝑤𝑛𝑦 − 𝜃𝑣𝑛𝑧 𝑤𝑛𝑧 − 𝜃𝑤𝑛𝑧 + 𝑞𝑛 𝜃𝑛𝑧

(𝜃 2⁄ 𝑞𝑛
2 − 𝐻) 𝐻𝑛𝑥 − 𝜃𝑢𝑞𝑛 𝐻𝑛𝑦 − 𝜃𝑣𝑞𝑛 𝐻𝑛𝑧 − 𝜃𝑤𝑞𝑛 𝛾𝑞𝑛)

 
 
 

. 

 

Where, 𝜃 =  𝛾 − 1 and 𝐻 = 𝑝 𝜌⁄ . 𝑞 and 𝑞𝑛 are,  

 

𝑞𝑛 = u𝑛𝑥 + 𝑣𝑛𝑦 + 𝑤𝑛𝑧 (5) 

 

𝑞𝑛
2 = 𝑢2 + 𝑣2 + 𝑤2 (6) 

 

Compressible codes for low speed flows need to apply the primitive variables to increase the convergence rate. Aiming 

a better convergence rate the resultant matrix is composed by the Jacobian matrix (𝜕𝑞 𝜕𝑄⁄ ) to change the variables and the 

preconditioning matrix (𝑃) to change the solution eigenvalues. Multiplying the matrix 𝐷𝑛 by the resultant matrix (Γ) and 

substituting Eq. (3) in Eq. (1), 

 

∂𝑞 

∂𝑡
=  −P 𝐷𝑛(𝑄), (7) 

 

Where,𝑃 = 𝛤 𝜕𝑄 𝜕𝑞⁄ . The matrix Γ is,  
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𝛤 =

(

 
 
 
 
 
 
 
 

𝛽2 0 0 0 0

−
(𝛼 + 1)𝑢

𝜌
1/𝜌 0 0 0

−
(𝛼 + 1)𝑣

𝜌
0 1/𝜌 0 0

−
(𝛼 + 1)𝑤

𝜌
0 0 1/𝜌 0

�̂� [𝛽2 +
𝑞𝑛

2

2
−

𝑎2

𝛾 − 1
] �̂�𝑢 �̂�𝑣 �̂�𝑤 �̂�

)

 
 
 
 
 
 
 
 

 

 

�̂� is the dimensionless temperature,  

 

�̂� =  
(𝛾 − 1)𝑇

𝛾𝑝
 

 

𝑎 is the sound speed, 𝛼 is a free parameter constant set in the range 0 ≤ 𝛼 ≤ 1, and β is the preconditioning sensor 

established by Turkel, Vatsa and Radespiel [14] is scaled with the speed flow, ensuring the proportionality of the solution 

eigenvalue and the flow speed, then,  

 

β2 =  min {𝑚𝑎𝑥 [𝐾1(𝑢
2 + 𝑣2 + 𝑤2) (1 +

1 − 𝑀0
2

𝑀0
4 ) , 𝐾2

2(𝑢2 + 𝑣2 + 𝑤2)] , 𝑎2} (8) 

 

With 𝐾1between 1.0 and 1.1 and 𝐾2is between 0.4 and 1.0. The value of β is calculated for each cell of the control 

volume. Analysing the Eq. (11), for high Mach numbers 𝛽2 = 𝑎2 then 𝛤 = 𝐼 returning to the original code.  

 
2.1. A new limit for the preconditioning sensor 

The preconditioning method of the Turkel, Vatsa, and Radespiel [14] for low speed flows showed transient 

amplifications near stagnation points which causes a robustness loss, these amplifications were shown by Darmofal and 

Schimid [13] then, some changes were proposed to improve the preconditioner performance.  

Darmofal and Siu [15] did a Fourier analysis showing the transient amplification growth to the local preconditioners 

when the preconditioning sensor goes to zero. Therefore, the authors suggested a limit to the preconditioning sensor 

based on the pressure to avoid that possibility. The 𝛽𝑙𝑖𝑚𝑛𝑒𝑤
is defined as, 

 

𝛽𝑙𝑖𝑚𝑛𝑒𝑤
= 

|𝑝𝑅 − 𝑝𝐿|

𝜌𝑎2
, (9) 

 

where, L and R are the neighbours in the left and right sides of each face of the control volume. For each cell of the control 

volume, 𝛽𝑐𝑒𝑙𝑙
2 is, 

 

𝛽𝑐𝑒𝑙𝑙
2 = max𝑘=1

𝑘=6(𝛽𝑓𝑎𝑐𝑒
2 )𝑘 . (10) 

 

Where, 𝛽𝑓𝑎𝑐𝑒
2  is defined as, 

 

𝛽𝑓𝑎𝑐𝑒
2 = min[1,max(𝛽𝐿

2, 𝛽𝑅
2, 𝛽𝑙𝑖𝑚𝑛𝑒𝑤

2 )]. (11) 

 

The flux of the preconditioning sensor for each cell of the control volume is calculated by the Eq. (12),  

 



 

 

 

 

 

HTFF 190-5 

𝛽𝑓𝑙𝑢𝑥
2 = max(𝛽𝑐𝑒𝑙𝑙𝑅 

2 , 𝛽𝑐𝑒𝑙𝑙𝐿
2 ). (12) 

 

Darmorfal and Siu [15] also redefined α as a function of the Mach cut off (𝑀0), 

 

α =
(1 − 𝑀0

2)

𝑀0
2 . 

(13) 

 

For low speed flows the eigenvalues are small causing a decrease in the time step which decreases the convergence rate. 

Then, Turkel, Vatsa and Radespiel [14] suggested the Eq. (14) to calculate the time step to the preconditioning cells. 

 

∆𝑡 =
𝐶𝐹𝐿

1
2 [|𝑞𝑛|(1 − 𝛽2) + √𝑞2(1 − 𝛽2) + 4𝛽2𝑎2]

∆𝑥 (14) 

 
3. Numerical Simulation 

Tomita [16] developed a three-dimensional compressible code which solves Euler and Navier-Stokes equations. The 

spatial discretization is done applying the cell-centered finite volume method. The centered scheme discretized the 

convective terms, also due to the numerical instabilities caused by the centered scheme the artificial dissipation was added 

based in the work of the Jameson, Schmid, and Turkel [17]. 

To implement the preconditioning technique in the original code was required the total residual composed by the 

convective, viscous flux and artificial dissipation [18]. Then, the residual is multiplied by the Jacobian matrix and next to 

the preconditioning matrix (Γ), finally, the five steps Runge-Kutta scheme is applied to make the time integration. Aiming 

to accelerate the convergence rate is applied to the implicit residual smoothing (IRS) of the Jameson, Schmid, and Turkel 

[17]. After that, primitive variables were changed to conservative for the next time steps. Lastly, the boundary conditions are 

applied outside of the flow domain through ghost cells to ensure the correct information in the boundary cells. 

The inviscid flow (Euler equations) is tested to a flow over a cylinder submitted to a subsonic flow. First, the Mach 

number is set as 0.17, and to test the preconditioning performance the free stream Mach number was decreased to 0.05. In 

both cases, the original compressible code (named as original) and the proposed preconditioning (named as Preconditioning), 

were tested and compared. 

 
3.1. Flow over a cylinder 

The simulation of a cylinder is done considering its symmetry in the x-direction. Several authors studied the flow past 

a cylinder in a uniform stream [19] showing two stagnation points, one at the front and another at the back of the cylinder 

which also produced a stagnation region in the flow downstream. It is considered a cylinder with a diameter of 1 mm, the 

mesh creation respected the non-reflection conditions in the boundary as established by [20]. A three-dimensional hexahedral 

mesh with 27,306 nodes, 17,680 volumes and 18,724 2D elements is used in the numerical simulations (Fig. 1). The boundary 

conditions applied were: velocity inlet, far-field and symmetry. It was set upstream of the cylinder the free-stream Mach 

number as 0.17, and the CFL number was 0.1. 
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         Fig. 1: Sketch of the mesh used to simulate the cylinder. 

 

Figs. 2 and 3 present the density and Mach contours to the original and preconditioning code.   

 

       
     (a)Original.                                                             (b)Preconditioning 1.       

Fig. 2: Density contours to the original and preconditioning methods (𝑀 = 0.17). 

 

       
     (a)Original.                                                             (b)Preconditioning 1.       

Fig. 3: Mach contours to the original and preconditioning methods (𝑀 = 0.17). 
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Analysing the Figs. 2 and 3 are shown close solutions for the original and preconditioning methods with the same 

distribution of density and Mach contours. The highest Mach number localized on the forward surface is 0.36 and is also 

also showing higher stagnation region in the cylinder downstream. In Fig. 4 are present the distribution of Mach contours 

with lines to show the flow behaviour close to the cylinder, mainly near the stagnation points, demonstrating a close 

distribution of both methods without degrading in the solution.   
 

        
     (a)Original       (b)Preconditioning 2.       

Fig. 4: Mach contours to the three methods. 𝑀 = 0.17, 30 equally spaced contours from 𝑀 = 0.012 to 0.36. 

 

The logarithmic residual history of the original and preconditioning methods is shown in Fig. 5. 

 
Fig. 5: Log residual histories for a flow over a cylinder. 

 

To demonstrate the preconditioning performance for a low-speed flow, the free-stream Mach number is decreased to 

0.05 making the flow essentially incompressible. The original and preconditioning methods were tested. The CFL number 

adopted was 0.1. 
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                             (a)  Original.                                                                        (b) Preconditioning 2.  

Fig. 6: Density contours to the three methods (𝑀 = 0.05). 

         
                             (a)  Original.                                                                        (b) Preconditioning 2.   

Fig. 7: Mach contours to the three methods (𝑀 = 0.05). 

 

The density and Mach contours had close solutions for the original and preconditioning methods. It shows the 

highest value of Mach number is 0.1 and the stagnation points with lower speed are presented in the cylinder upstream 

and downstream. Although the original compressible code had accurate solutions for a flow Mach number lower than 

the incompressible limit (M=0.1) for more complex cases its accuracy could be loss [16]. Fig. 8 shows the lines of Mach 

number contour to flow past a cylinder.   

 

         
                                           (a)  Original.                                                                        (b) Preconditioning.   

Fig. 8: Mach contours to the three methods. 𝑀 = 0.17, 30 equally spaced contours from 𝑀 = 0.012 to 0.36. 

 

The lines in Fig. 8 show a close distribution of Mach contours over a cylinder for both methods. It is present that 

the solution has begun to degrade due to the low-speed flow. Fig. 9 presents the logarithm residual histories for original 

and preconditioning methods. 
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Fig. 9: Log residual histories for a flow over a cylinder. 

 

In Fig. 9 is shown a higher decay to the preconditioning code, with 1110 iterations the preconditioning code is converged 

and to the 5740 iterations, the original code is converged indicating an accelerating in the convergence rate when the 

preconditioning method is implemented. 
 

4. Conclusion 

In the present work, a preconditioning technique was applied to a 3D compressible CFD code. Research into the 

literature, the local preconditioning method of Turkel, Vatsa, and Radespiel [14] was applied due to the accuracy of predicting 

the lift and drag coefficients in airfoils. After some tests for low speed flows the preconditioning code showed a loss in the 

robustness, therefore modifications in the original preconditioning technique were proposed. For that, it is established an 

explicit flux function and a new limit to the preconditioning sensor based on the work of Darmofal and Siu [16]. 

For the compressible case with a flow Mach number of 0.17 both methods showed close solutions with the flow Mach 

number distribution as shown in the literature [19]. Decreasing the flow Mach number to 0.05 the numerical solutions are 

close for both cases, however, near stagnation points, the solution is beginning to degrade. The preconditioning implemented 

in the original code increases the convergence rate for low flow Mach number.  

All in all, the original code did not lose the solution accuracy for low Mach number flows, however, for complex cases, 

it does not guarantee the accuracy. Implementing the preconditioning technique in the original compressible code the solution 

convergence rate is accelerated.   
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