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Abstract – This work addresses an extension of Physics-Informed Neural Network (PINN), which learns solutions of partial differential 
equations (PDE). In the originally proposed PINN [1], the initial conditions are kept constant. In this study, we extend the PINN so that 
the initial conditions can be varied by means of low-dimensional identifiers which represent the initial conditions. A validity of the 
proposed method is confirmed through the PDE for the liquid film flow. The solutions of the PDE predicted by the PINN showed good 
agreement with those obtained by the finite difference method, and the dependence of the initial conditions are also correctly reproduced. 
As requirements for the low-dimensional identifier of the initial conditions, it is suggested that continuity and uniqueness are necessary 
condition and the linearity is sufficient condition. 
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1. Introduction 

In the manufacturing process of semiconductors and MEMS devices, a resist film consisting of a resin and a solvent is 
coated onto a substrate, and it is known that various thickness undulations appear in the final resist films [2, 3]. Although 
numerical simulations have been used to predict such thickness undulations, it is difficult to optimize the coating conditions 
from an inverse problem perspective because the time evolution of the governing equations takes a long calculation time. In 
the general optimization procedure, it is necessary to evaluate the objective function and its gradient with respect to the 
parameters in coating conditions. Both take much computational cost in the conventional numerical method based on the 
time evolution calculation. 

Physics-Informed Neural Network (PINN), which has been proposed by Raissi et al. [1], can be considered as a way to 
resolve such a situation. The PINN learns the solutions of a partial differential equation (PDE) for given dataset of the input 
variables. In the training process of PINN, a loss function is defined as the mean square error of the predicted solutions of 
the PDE. To evaluate the loss function, the temporal and spatial derivatives of the unknowns are calculated by the automatic 
differentiation (AD) which is implemented in the neural network (NN) framework. Once a PINN has been trained, the 
solutions for any time instance can be directly calculated without time integration by forward calculations of the NN. In 
addition, the gradient of the solution with respect to the input variable can be efficiently calculated by the AD. The authors' 
research group has studied to apply the PINN to the PDE for the liquid film flow in order to finally achieve the optimization 
of the coating conditions which can avoid or suppress the thickness undulations. In the problem of the liquid film flow 
including the surface tension (Laplace pressure) effect, the PDE involves a fourth-order spatial derivative and the fourth-
order nonlinearity of unknowns. Even for such a type of PDE, the PINN was found to correctly predict the solutions [4].  

In the original PINN, the initial conditions are fixed during training. For the different initial conditions, the PINN has to 
be retrained. Due to this restriction, the it is difficult to calculate the gradient of the solution with respect to the initial 
conditions, thus the PINN cannot be applied to the optimization of the initial conditions of the coating process. The PINN is 
expected to also be applied to the data assimilation, in which the uncertain parameters for the simulation are optimized to 
minimize the difference between simulation and observation [5]. Regarding the application of the PINN to the data 
assimilation, the restriction of initial conditions becomes to be serious drawback. 

Therefore, the purpose of this study is to extend the original PINN so that the initial conditions be variable. A way to 
realize this is described in the next section, then the proposed method is validated by comparing the results with those 
obtained by the finite difference method. 
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2. Approach 
2.1. Overview 

Figure 1 shows how we make the initial condition be variable in the PINN. We express the initial conditions with 
low-dimensional identifiers. These identifiers are obtained by certain mapping from the initial conditions. Then, these 
identifiers are taken as input of the PINN. During training of the PINN, the loss function is evaluated using not the low-
dimensional identifier but the original initial condition itself. Although, in principle the discretized initial conditions can 
be directly put into the PINN, the number discretized points are likely be too huge for the input of the PINN. We consider 
making the low-dimensional identifiers in order to reduce the input dimension of the PINN.  

 

 
Fig. 1: PINN with a low-dimensional identifier added to the input 

 
2.2. Low-Dimensional Identifiers 

In this study, we considered four types of low-dimensional identifiers; LIN, CAE, WAV and DIS, as summarized 
in Table 1. The LIN is the identity mapping, where the initial conditions are expressed as parametric analytic function, 
and its parameters are directly used as the identifier. This LIN is regarded as essential verification whether the difference 
in initial conditions can be reflected in the PINN. In the CAE, the given dataset of initial conditions is mapped onto the 
identifiers by the Convolutional Autoencoder (CAE) [6]. Through the CAE network, the data dimension of the initial 
condition can be highly reduced. In the CAE, we examine the extensibility of this method to general-purpose input. 
WAV creates a non-linear low-dimensional identifier and examines the effect of the degree of non-linearity. The WAV 
is a nonlinear mapping with a wavy function Through this WAV, we investigate the effect of nonlinearity in the accuracy 
of the PINN. Finally, the DIS is the discontinuous mapping. The function used as DIS is discontinuous but unique (no 
folding). Through this DIS, we will investigate whether the continuity is necessary for the identifiers. Figure 2 shows 
the detailed functions used as mapping of the identifiers. 

Table 1: Low-dimensional identifiers considered 

Identifier Description Function 

LIN Identity mapping 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 

CAE Encoded by CAE 𝑓𝑓(𝑥𝑥) = CAE(𝑥𝑥) 

WAV Nonlinear mapping 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 +
1

20
sin(6𝜋𝜋𝑥𝑥) 

DIS Discontinuous mapping 𝑓𝑓(𝑥𝑥) = � 1 − 𝑥𝑥 (𝑥𝑥 ≤ 1/8) or (1/4 < 𝑥𝑥 ≤ 3/8)
𝑥𝑥 + 1/8 else  



 
 

 
 

 
 

 
HTFF 113-3 

 
Fig. 2: Profiles of mapping functions for low-dimensional identifiers. (a) linear function: LIN, (b) encoded by CAE, (c) wavy function: 

WAV, and (d) discontinue function: DIS. 
 
3. Validation 
3.1. Problem formulation: Governing equation and boundary conditions 

In order to validate the proposed method, it is applied to a liquid film flow problem. As the governing equations, we 
consider the following equations, where only the relaxation term due to Laplace pressure is considered. 

𝐹𝐹:
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥

�ℎ3
𝜕𝜕3ℎ
𝜕𝜕𝑥𝑥3

� = 0 (1) 

This partial differential equation describes the time evolution of the film thickness distribution due to surface tension. 
ℎ, 𝜕𝜕, and 𝑥𝑥 are the film thickness, time, and coordinates, respectively. The equation is nondimensionalized using the scales 
listed in the Table 2, where ℎ0 is the base thickness of the film, 𝐿𝐿 is the representative length, 𝜇𝜇 is the viscosity coefficient 
and 𝜎𝜎 is the surface tension.  
 

Table 2:  Scales used for the nondimensionalization. 

Lateral length Thickness Time Pressure 

𝐿𝐿 ℎ0 3𝜇𝜇𝐿𝐿4/(𝜎𝜎ℎ03)  ℎ0𝜎𝜎/𝐿𝐿2 
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The following boundary conditions were applied so that the gradient of the thickness and the curvature becomes 
zero at the end of the solution domain. 

𝐵𝐵:
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

=
𝜕𝜕3ℎ
𝜕𝜕𝑥𝑥3

= 0  at  𝑥𝑥 = 𝑥𝑥min，𝑥𝑥max (2) 

 
3.2. Initial Conditions 

The initial conditions are expressed in the following functional form. 

𝑆𝑆:ℎ(𝑥𝑥, 𝜕𝜕 = 0) = (ℎ1 − ℎ0) �1 − �𝑥𝑥 −
𝑥𝑥0
𝜆𝜆
�
2
� exp�

(𝑥𝑥 − 𝑥𝑥0)2

(2𝜆𝜆2) � + ℎ0  (3) 

Using Eq. (3) and the parameters listed in the Table 3, the dataset of the initial conditions are generated. The number 
of discrete points in the initial condition is selected as 𝑁𝑁𝑥𝑥 = 256. 

 
Table 3: Dataset of initial condition parameters 

Parameter 𝑥𝑥0 𝜆𝜆 ℎ0 ℎ1 
Value range 0.0~0.5 0.7 1 3 

 
3.3. Loss Function of PINN 

The loss function of PINN is defined as follows.  
𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐽𝐽𝐹𝐹 + 𝐽𝐽𝑂𝑂 + 𝐽𝐽𝑃𝑃 + 𝐽𝐽𝐿𝐿2 

𝐽𝐽𝐹𝐹 = �[𝐹𝐹(ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖, 𝜕𝜕𝑖𝑖,𝒈𝒈𝑖𝑖)]2
𝑃𝑃𝑓𝑓

𝑖𝑖

 

𝐽𝐽𝑂𝑂 = �[ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖, 𝜕𝜕𝑖𝑖,𝒈𝒈𝑖𝑖) − ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)]2
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖

 

𝐽𝐽𝐵𝐵 = ��
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥
�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑥𝑥, 𝜕𝜕𝑖𝑖,𝒈𝒈𝑖𝑖)�
2𝑃𝑃𝐵𝐵

𝑖𝑖

+ ��
𝜕𝜕3ℎ
𝜕𝜕𝑥𝑥3

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑥𝑥, 𝜕𝜕𝑖𝑖 ,𝒈𝒈𝑖𝑖)�
2𝑃𝑃𝐵𝐵

𝑖𝑖

 

𝐽𝐽𝑃𝑃 = �max( 0, exp�−ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖, 𝜕𝜕𝑖𝑖 ,𝒈𝒈𝑖𝑖)� − 1)

𝑃𝑃𝑓𝑓

𝑖𝑖

 

 

(4) 

𝐽𝐽𝐹𝐹  is the mean squared error of the governing equation, 𝐽𝐽𝑂𝑂  and 𝐽𝐽𝐵𝐵  are the initial and boundary conditions, 
respectively, 𝐽𝐽𝑃𝑃  is the penalty function for the film thickness ℎ to impose a positivity constraint, and 𝐽𝐽𝐿𝐿2  is the L2 
normalization term. 𝒈𝒈 is low-dimensional identifier for the initial conditions. In the present study, the network is 
composed by 8 hidden dense layers with 20 neurons per layer. The training dataset was generated by randomly sampled 
𝑁𝑁𝑓𝑓 = 3000 points from a set of discrete points equally spaced on a linear scale in the 𝑥𝑥 direction and on a logarithmic 
scale in the 𝜕𝜕 direction. 
 
3.4. Finite Differences 

In order to validate the proposed method, the results obtained by the PINN was compared with those obtained by 
the finite difference method (FDM). In the FDM, the governing equation Eq. (1) is discretized by the finite differences 
on a equidistant grid of 𝑁𝑁𝑥𝑥 points with an interval Δ𝑥𝑥. The positivity-preserving scheme is applied to ℎ3 of the Laplace 
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pressure term in Eq. (1), because the standard finite difference schemes do not necessarily preserve a positivity of ℎ, and the 
occurrence of nonpositive solution introduces artificial instability [7]. Due to the fourth-order spatial derivative of ℎ in Eq. 
(1), a time step restriction for the numerical stability requires Δ𝜕𝜕 < 𝑂𝑂(Δ𝑥𝑥4), which is a quite severe condition in practice. In 
order to cope with this restriction, the fully implicit time integration of Newton-Kantrovich method is applied with Crank-
Nicholson, according to Diez and Kondic [8]. 

 
4. Results 

Fig.3 shows the contours of the film thickness in logarithmic scale logℎ in the plane of horizontal axis is time 𝜕𝜕 and the 
vertical axis is coordinate 𝑥𝑥. Fig.3(a) shows the result of FDM, and Fig.3(b) of PINN for the case of the LIN as the low-
dimensional identifier. From Fig.3, it can be confirmed that the relaxed shape of the initial condition can be reproduced even 
if the low-dimensional identifier is used for input. 

 

 
Fig. 3: Prediction of film thickness ℎ(𝜕𝜕, 𝑥𝑥) in space-time (𝜕𝜕, 𝑥𝑥). 

(a) FDM (b) PINN with low-dimensional identifier by LIN 
 
For a more detailed comparison, snapshots of the film thickness distributions for the initial state (𝜕𝜕 = 0) and after time 

(𝜕𝜕 = 0.5) are shown in Fig.4 and Fig.5. Table 4 shows the RMS average values at the initial state (𝜕𝜕 = 0) and at the 
sufficiently later time instance (𝜕𝜕 = 0.5). From Fig.4, it was found that the difference of the initial conditions is successfully 
reproduced for the cases of LIN, CAE, and WAV. However, DIS did not reflect the difference in the initial conditions. For 
the cases of LIN, CAE and WAV, the error between the PINN and the FDM are found at the location where the curvature of 
the thickness is large. The RMS average in the DIS is one order of magnitude larger than those in other three cases.  

 
Table 4: The RMS average values in the initial state (𝜕𝜕 = 0) and after the passage of time (𝜕𝜕 = 0.5)  

Identifier Initial state  
𝑥𝑥0 = 0 

Initial state  
𝑥𝑥0 = 0.3 

End state  
𝑥𝑥0 = 0 

End state  
𝑥𝑥0 = 0.3 

LIN 4.4 × 10−2 4.4 × 10−2 8.8 × 10−3 9.6 × 10−3 
CAE 4.1 × 10−2 4.2 × 10−2 9.8 × 10−3 9.7 × 10−3 
WAV 4.8 × 10−2 4.8 × 10−2 1.4 × 10−2 1.7 × 10−2 
DIS 1.4 × 10−1 2.0 × 10−1 1.2 × 10−2 2.4 × 10−2 
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Fig. 4: Snapshots of the thickness distribution at the initial state (𝜕𝜕 = 0)  
when low-dimensional identifiers of LIN, CAE, WAV, DIS and FDM. 

 

 
Fig. 5: Snapshots of the thickness distribution at the end state (𝜕𝜕 = 0.5)  
when low-dimensional identifiers of LIN, CAE, WAV, DIS and FDM. 
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5. Discussion 
From the result shown in Fig.4, Fig.5, and Table 4, it was found that the variation of the initial condition is successfully 

successfully reproduced by the PINN by the method proposed in the present work; low-dimensional identifiers. However, 
the accuracy was different depending on the mapping function used. Therefore, we consider what the conditions are required 
required for low-dimensional identifiers. First, if there are duplicate values in the low-dimensional identifier, they will have 
have the same low-dimensional identifier value for different initial conditions, and it will not correspond to the difference in 
the initial conditions, so there should be no duplication (uniqueness of the identifier). From Fig.2, if the discontinuity is 
involved in the mapping function, the difference in the initial conditions cannot be correctly reproduced (case DIS). Therefore, 
continuity can be regarded as necessary condition for the low-dimensional identifier. Among the three cases where the initial 
conditions can be reflected, the difference was the degree of non-linearity. The case LIN is linear, the CAE is slightly 
nonlinear, and the WAV is highly nonlinear. The prediction error in the case WAV is significant. Although the RMS error 
are almost the same in cases LIN and CAE, the CAE is more applicability for the general initial conditions. 
 
6. Conclusions 

In the present study, the PINN is extended so that the initial condition can be varied by the low-dimensional identifiers. 
Through the validation of the four-types of the identifier, we concluded that continuity and uniqueness are necessary 
condition and the linearity is sufficient condition for the low-dimensional identifier of the initial conditions. Even if these 
requirements for the identifier are satisfied, the accuracy of the PINN is depending on the degree of the nonlinearity of the 
mapping functions. 

By use of the proposed method, it can be realized that the gradient of the solutions with respect to the initial conditions. 
Consequently, the optimization of the process conditions in the film-coating is expected to be realized. 
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