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Abstract - This paper considers the thixotropic non-Newtonian fluid flow in the duct under steady rate. Such flow occurs after pump 
start-up while drilling and other industrial processes. We propose a model to describe the influence of gel breaking phenomena on the 
flow. The fluid structural parameter defines fluid yield point and is a subject of gel build up and strain-dependent gel breaking. A control 
volume approach with the additional assumption on velocity profile enables the analytical solution. This solution evaluates the evolution 
of flow structure, as the plug reduces and accelerates and the yielding zone grows from the wall. The offered solution can be used for 
planning and automation of industrial processes sensitive to gel presence. 
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1. Introduction 

During borehole drilling the pumps at the surface circulate the drilling mud downwards in the tubing and upwards 
through the annulus. The flow stops regularly for surface operations. Many types of drilling mud exhibit time-dependent 
stresses. They build a high viscous gel as the flow stops and turn gradually to less viscous fluid as the flow resumes. 
A common practice in drilling operations is to ramp up the pumps to a moderate flow rate and keep it constant until gel 
degrades. After a flow initiation the gel breaking starts in the shear flow region. Pressure dynamics is affected by gel presence 
(see Figure 1). The gel degradation stage lasts 10-100 seconds, meanwhile pressure gradient falls. The degradation might not 
completely remove gels in the borehole, but it mitigates high pressure values for high flow rates. Afterwards pumps ramp up 
to a higher operational flow rate. The principal question for drilling operation is when to finish gel breaking and switch to 
operational rate. This has motivated us for this study on transient effect in drilling mud flow under steady flow. 

The dependence of stress on time is known as thixotropy, and various thixotropic fluid models explain industrial and 
natural flows. The gel breaking phase in drilling operations comes down to stress relaxation in the thixotropic fluid. In study 
[1], the authors conducted experiments with thixotropic fluid and reported the significant pressure drop under the steady rate. 
In [2] an indirect microstructural model for thixotropic fluids was overviewed, that related the rheology changes to a 
structural parameter. A model for thixotropic behaviour was proposed as a competition of gel building and gel breaking for 
capturing the oscillatory flow. A detailed study on flow startup with fluid enhanced with elastic stresses can be found in [3], 
where a numerical study analyses pressure behaviour for fluids of various rheology, including thixotropic fluid. 

Specific applications of models with thixotropy to drilling comprise the fits of mud rheology measurements [4] and the 
matching of annular pressure drop after pumps start up [5]. The latter work tuned a gel breaking coefficient in the empirical 
closure for wall friction. Multiple analytical solutions for thixotropic non-Newtonian fluid are available in the literature for 
thixotropic behavior in pipe. For example, a steady analytical solution for pipe flow of thixotropic viscoplastic fluid was 
found [6]. The evaluation of steady flow [7] develops a particular case of study [6] and applies the specific closures for 
cement. In [8], the authors were interested in the transient solution for oscillating pressure for several thixotropic fluids. To 
our knowledge, the practical case of flow ramp-up in the pipe has not been considered analytically yet and we focus on it 
here.  

This paper proposes a physics-based model to evaluate pressure changes in thixotropic fluid flow of a constant rate. We 
couple Houska model for thixotropy [9] with continuity and momentum equations. We build the approximate solution of 
that problem with a control volumes approach. Finally, the parametric study of analytical solution and the implementation 
of the model are discussed. 
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Fig. 1: Flow rate (in red) and pressure drop (in blue) during drilling operation. The dashed black line is for the model prediction. 
 

2. Model 
We consider a unidirectional laminar flow in the duct of constant cross-section A. The schematic of the flow in 

Figure 2 shows two axes with coordinates r and z. The third coordinate is either cartesian for the infinite planar duct 
(m=0) or polar for the circular pipe (m=1). The flow velocity has the only non-zero component u along z-coordinate. 

 

 
Fig. 2: Schematic of viscoplastic fluid flow in the duct/pipe. Plug zone is highlighted with green. 

 
The fluid is incompressible and of constant density ρ, and is also viscoplastic. It satisfies the no-slip condition at 

duct walls. A viscoplastic flow contains plugs, where the stress is below the yield point τ. The plug moves as a solid 
body, while the rest of the fluid flows in the yielding zone. Figure 2 shows a typical flow structure for the duct flow with 
a plug in the middle. Due to the simple geometry, the only plug dimension is its size rP.  

The fluid is thixotropic. Prior to the start of the flow, the fluid stayed steady for an indefinitely long time. The plug 
has achieved the yield point τP. At the starting moment the flow rate immediately steps to the constant value Q. We 
assume, that after a short time the gel mass comes into motion and a thin gel layer next to the walls becomes broken (see 
the flow initiation in Figure 2). The further analysis of governing equations helps to evaluate the system state shortly 
after the flow ramps up. 
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Table 1: List of flow dimensional parameters. 
Parameter Notation Status Depends on Scale 
time t  - 𝐷𝐷𝐴𝐴/(2𝑄𝑄) 
coordinate along pipe z  - D/2 
coordinate in pipe section r  - D/2 
steady flow rate Q scale - Q 
duct diameter D scale - D 
velocity z-component u unknown r,t 𝑉𝑉 = 𝑄𝑄/𝐴𝐴 
yield point  τ unknown r,t τy,0 
rz-component of viscous stress tensor τrz unknown r,t τy,0 
pressure P unknown z,t 𝜌𝜌𝑉𝑉2/2 
structural parameter λ unknown r,t 1 
rate constant related to gel build-up k1  - 𝐷𝐷/(2𝑉𝑉) 
rate constant related to gel breaking k2  - 1 

 
At first let us state a model for the unknown parameters from Table 1. A system of governing equations consists of a 

condition for steady flow rate from mass continuity, a z-component of momentum equations, and closures for fluid properties. 
Bingham model of constant viscosity µ covers the fluid behaviour. As in [9], we assume a thixotropic behaviour of the yield 
point τy, which depends on the structural parameter λ and varies between values τy,0 and τy,∞. τy,∞ is the yield stress for fluid 
with complete gels breakdown, happening with the fluid set in motion for infinite time. τy,0 is the yield point of fluid with 
fully developed gel. For the evolution of the structural parameter λ we use the approach from study [2]. 

 

� 𝑢𝑢 𝑑𝑑𝑑𝑑
𝐴𝐴

= 𝑄𝑄 (1) 

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  
1
𝑟𝑟𝑚𝑚

𝜕𝜕(𝑟𝑟𝑚𝑚𝝉𝝉𝑟𝑟𝑟𝑟)
𝜕𝜕𝜕𝜕

 
 

(2) 

𝝉𝝉𝑟𝑟𝑟𝑟 = 𝜇𝜇
𝜕𝜕𝜕𝜕
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(4) 

  
𝜏𝜏𝑦𝑦 = 𝜏𝜏𝑦𝑦,∞ + 𝜆𝜆 (𝜏𝜏𝑦𝑦,0 − 𝜏𝜏𝑦𝑦,∞) (5) 

  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�  𝜆𝜆 

 
(6) 

 
Here m is geometry index, which is equal to 1 for planar duct and equal to 2 for circular pipe. Table 4 comprises other 

notations. Let us turn equations (1)-(3),(5),(6) to dimensionless form for the yielding zone with the scales from Table 1. 
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Together with scaling of equation (1),(3) and (6), the form of velocity profile is taken into account. The scaled system 
of governing equation has the following form: 

 

𝐴𝐴𝑝𝑝𝑢𝑢𝑝𝑝
𝐴𝐴

+ �𝑢𝑢 𝑟𝑟𝑚𝑚 𝑑𝑑𝑑𝑑
1

𝑟𝑟𝑃𝑃

= 1 (7) 

  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
𝑅𝑅𝑅𝑅

1
𝑟𝑟𝑚𝑚

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟𝑚𝑚 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝐵𝐵𝐵𝐵 𝜏𝜏𝑦𝑦�� (8) 

  
𝜏𝜏𝑦𝑦 = 1 + 𝛿𝛿𝛿𝛿 𝜆𝜆 (9) 

  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘1(1 − 𝜆𝜆) + 𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜆𝜆 
 

(10) 

Here Ap is a cross-section area of the plug and uP is a plug velocity. Table 2 comprises dimensionless numbers in 
use. 

 
Table 2: List of flow dimensionless parameters. 

Parameter Notation Definition Case 1 

Reynolds number Re 
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

 1000 

Bingham number Bm 
𝐷𝐷𝜏𝜏𝑦𝑦,0
𝑉𝑉𝑉𝑉

 variable 

yield point variation δτ 
𝜏𝜏𝑦𝑦,0
𝜏𝜏𝑦𝑦,∞

− 1 1 

 
2.1. Problem analysis with control volumes approach 

There are two control volumes to consider integrals of momentum equation (8). These control volumes are prisms 
of unit height. Table 3 shows their scaled parameters. 

 
Table 3: Control volume parameters. 

Parameter Planar geometry Circular geometry 
m 0 1 

Duct control volume 
side wall S 1 2π 
base area A 1 π 

Plug control volume 
side wall SP 1 max(0,2πrP) 
base area AP max(0,rP) max(0,πrP

2) 
 
For the duct segment between two cross-sections, the integral relates pressure gradient to velocity gradient and 

viscous stress τW at the wall as follows: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑆𝑆

𝐴𝐴 𝑅𝑅𝑅𝑅
( 𝑤𝑤 + 𝐵𝐵𝐵𝐵 𝜏𝜏𝑊𝑊) (11) 

 
Here w is the absolute value of the velocity gradient at the wall: 
 

𝑤𝑤 = −  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=1

 (12) 

 
The second specified control volume is a plug segment inside the duct segment. It has a cylindrical sidewall of area SP 

and two cross-sections across the flow with area AP. In the integral for this control volume, a pressure gradient can be 
expressed from equation (11) as: 

 

−
𝑑𝑑(𝑢𝑢𝑃𝑃𝐴𝐴𝑃𝑃)

𝑑𝑑𝑑𝑑
=  

𝐴𝐴𝑃𝑃 𝑆𝑆
𝐴𝐴 𝑅𝑅𝑅𝑅

�𝑤𝑤 + 𝐵𝐵𝐵𝐵�𝜏𝜏𝑊𝑊 −
𝐴𝐴 𝑆𝑆𝑃𝑃
𝐴𝐴𝑃𝑃 𝑆𝑆

𝜏𝜏𝑃𝑃�� (13) 

 
The combination of equations (9) and (10) at the wall looks as follows: 
 

𝑑𝑑𝜏𝜏𝑊𝑊
𝑑𝑑𝑑𝑑

= 𝑘𝑘1(1 + 𝛿𝛿𝜏𝜏 − 𝜏𝜏𝑊𝑊) − 𝑘𝑘2𝑤𝑤(𝜏𝜏𝑊𝑊 − 1) 
 

(14) 

Equations (13) and (14) form a system of ordinary differential equations for w and τW, once the plug properties are known 
functions of w. 

Due to a flow jump at t = 0 the multiple properties of the flow possess singularity, however the equations (13) and (14) 
provide an initial condition at the small time t as a following asymptotic: 

 

𝑤𝑤~
𝑅𝑅𝑅𝑅
𝑆𝑆

1
𝑡𝑡

 (15) 

 
The singularity of the solution at the start occurs due to fluid incompressibility. In reality, the acoustic pressure wave 

propagates along the duct and induces the flow, so the pressure drop has a phase of growth, until all fluid column comes into 
motion (see Figure 1). The fluid compressibility, acoustic wave and reproduction of pressure drop growth are out of scope 
of the model. 

 
3. Solution 
3.1. Solution in the plug zone 

Regardless of the yielding zone evolution, there is continuous gelation in the plug. According to equations (4) and (6), 
the yield point of plug grows uniformly as follows: 

 
𝜏𝜏𝑃𝑃(𝑡𝑡) = 1 + 𝛿𝛿𝛿𝛿 − �1 + 𝛿𝛿𝛿𝛿 − 𝜏𝜏𝑃𝑃(0)�exp (−𝑘𝑘1𝑡𝑡) 

 
(16) 
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3.2. Steady state solution in the yielding zone 
The steady state statements of (13), (14) lead to the relation between final plug size and other flow properties. As 

eventually the plug achieves gel yield point, they are as follows: 
 

𝑤𝑤 + 𝐵𝐵𝐵𝐵�𝜏𝜏𝑊𝑊 −
1 + 𝛿𝛿𝜏𝜏
𝑟𝑟𝑃𝑃 

� = 0 

 
(17) 

𝑘𝑘1(1 + 𝛿𝛿𝜏𝜏 − 𝜏𝜏𝑊𝑊) − 𝑘𝑘2𝑤𝑤(𝜏𝜏𝑊𝑊 − 1) = 0 
 (18) 

 
More details on steady state solution can be found in [6].The final plug under the fixed conditions has the size as 

follows: 
 

𝑟𝑟𝑃𝑃 =
𝐵𝐵𝐵𝐵 (1 + 𝛿𝛿𝜏𝜏)(𝐾𝐾𝐾𝐾 − 1)

𝑤𝑤 (𝐾𝐾𝐾𝐾 − 1) + 𝐵𝐵𝐵𝐵 (𝐾𝐾 𝑤𝑤 − 1 − 𝛿𝛿𝜏𝜏) 
 

 
(19) 

𝐾𝐾 =
𝑘𝑘2
𝑘𝑘1

 

 
The thixotropic fluid forms larger plug, than conventional Bingham fluid, because a gel build up eventually 

dominates in the regions with low velocity gradient. Coefficient K comprises balance between gel rates and flow 
velocity. Equation (19) evaluates, how effective can be gel breaking reduce the plug under steady flow rate.  
 
3.3. Approximate solution under assumption of parabolic velocity profile in the yielding zone 

In this section we build an approximate analytical solution with an additional assumption. For the yielding zone, 
fluid rheology model imposes the following conditions on velocity: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=𝑟𝑟𝑃𝑃

= 0, 𝑢𝑢|𝑟𝑟=𝑟𝑟𝑃𝑃 = 𝑢𝑢𝑃𝑃, 𝑢𝑢|𝑟𝑟=1 = 0   (20) 

 
Equations (7) and (20) complete the system of ordinary equations (13) and (14). Equation (11) obtains the pressure 

evolution from the flow parameters at the wall. The structural parameter is responsible for gel percentage. It is non-
uniform in the yielding zone and changes between the value at the wall and 1. The minimal value of a structural 
parameter is linked to the yield point at the wall and comes from equations (9) and (14). 

 
3.4. The case of planar duct with parabolic profile approximation 

The proposed approach leads to the integration of (7), (13), (14), (20). Let us apply it to the case of the planar 
duct (m=0), while the solution of another case comes with longer expressions. The velocity profile in the yielding zone 
has the following form: 

 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) =  
3(1 − 𝑟𝑟)(1 + 𝑟𝑟 − 2𝑟𝑟𝑃𝑃)

(1 − 𝑟𝑟𝑃𝑃)2(2 + 𝑟𝑟𝑃𝑃)  (21) 

 
The plug velocity and the wall velocity gradient depend on the plug size as: 
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𝑢𝑢𝑃𝑃 =
3

2 + 𝑟𝑟𝑃𝑃 
 

 
(22) 

𝑤𝑤 =
6

(1 − 𝑟𝑟𝑃𝑃)(2 + 𝑟𝑟𝑃𝑃) 
 (23) 

 
Figure 3 illustrates formula (23) with plug size versus velocity gradient at the wall. It is a purely geometrical constraint 

resulted from the mass conservation and the assumption on parabolic profile. The flow evolves from the large plug size to 
small towards steady state value, namely from right top corner of Figure 3 along blue curve toward the intersection with the 
the red curve. According to equation (22), the plug gains velocity upon contraction. The plug velocity cannot exceed the 
value of 1.5, which corresponds to a fluid without a yield point. If the velocity gradient at the wall has the minimum value 
of 3, which corresponds to the plug absence and complete parabolic velocity profile. 

 

 
Fig. 3: Plug size vs velocity gradient at the wall for the Bingham fluid flow in the duct. The constrain due to parabolic profile 

assumption – blue line. The steady state solution– dash red line (Bm = 5, K = 2, δτ = 1). 
 

Equations (13),(14),(20)-(23) provide w defined in (12) as a function of time. Figure 4 shows evolution of velocity 
gradient at the wall for different Bingham numbers for “Case 1” in Table 1 and for thixotropy τP = 1, k2 = 1 and k1<<1. The 
initiated flow has a steep velocity gradient at the start, as predicted by the asymptotic (15). The sheared flow of the yielding 
zone invokes the gel breaking, and the zone expands. As a result, the velocity gradient decreases and pressure drop falls. 
Simultaneously the plug becomes smaller, while gaining velocity. For different Bingham numbers the flow stabilizes at the 
well-known solution of steady state Bingham fluid flow. For higher Bingham numbers (less viscous fluid or higher yield 
point) the flow stabilization takes shorter time, and the final plug will be larger.  
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Fig. 4: Velocity gradient at the wall versus time for several Bingham numbers for thixotropic fluid flow in the duct after sudden flow 

rate ramp up. 
 

3. Discussion 
The time of stabilization is an important value in industry, particularly in drilling operations. It signifies the gel 

breaking stage. Having known its value, the processes sensitive to gel presence can be properly planned and automated. 
For example, in drilling operation the presence of gel significantly increases the pressure drop (see Figure 1), so that the 
system has to withstand the high pressures or execute under the lower flow rate. As the plug approaches to its steady 
size, the operation might get acknowledged on the accomplished gel breaking phase. The approximate solution enables 
an implementation in real time. It is important to notice, that a steady flow of viscoplastic fluid does not lose the plug 
completely, though the thixotropy effect reduces the plug size until the stabilization is achieved. 

Typically, in the advanced rheology measurements gel parameters are evaluated in a thin sheared flow with step-
wise changes of velocity gradient. In the task considered above, the sheared flow was non-uniform and the thixotropy 
gradually changed it. The proposed solution enables the scaling of gel parameters to the full-size flow. As result we 
observe the decrease of the yield point, so the thixotropy effect sustains flow lubrication up to flow stabilization.  

 
4. Conclusion 

The model for the transient thixotropic flow in the duct is based on momentum equations coupled with the indirect 
thixotropic Heschel-Bulkley fluid model. A sudden flow rate step invokes the flow, and a thixotropic effect makes the 
flow transient. The flow has plug and yielding zones; their sizes significantly change up to the flow stabilization. A 
simple geometry and an effective assumption on a parabolic profile allow an analytical solution. The evolution of 
velocity gradient at the wall defines all the other flow parameters. The analysis shows, how the gels breaking develops 
in a large-scale flow with respect to fluid properties. The solution finds its application in industrial processes, where the 
reduction of gels in a flow is important.  
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Appendix 

 
Table 4: Table of notations. 

Notation Description 
Greek 

δτ yield point variation 
λ structural parameter 
µ viscosity 
ρ density 
τy yield point 
τW yield point at the wall 
τrz stress tensor component 
τy,0 yield point for complete gel breakdown 
τy,∞ yield point for complete gel buildup 

Latin 
A pipe/duct cross-section area 
AP plug cross-section area 
Bm Bingham number 
D diameter of the pipe/duct 
k1 gel building rate 
k2 gel breaking rate 
m geometry index 
P pressure 
r coordinate across the pipe/duct 
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Re Reynolds number 
S wall surface area 
SP plug surface area 
t time 
Q flow rate 
u velocity 
w opposite velocity gradient at the wall 
z coordinate along the pipe/duct 

 
The equation (14) can be effectively integrated to express yield point at the wall explicitly: 

 
𝑑𝑑𝜏𝜏𝑤𝑤
𝑑𝑑𝑑𝑑

=  −𝑓𝑓(𝑡𝑡)(𝜏𝜏𝑤𝑤 − 1) + 𝑐𝑐, 𝑓𝑓(𝑡𝑡) = 𝑘𝑘1 + 𝑘𝑘2𝑤𝑤, 𝑐𝑐 = 𝑘𝑘1𝛿𝛿𝜏𝜏 (24) 

 

𝜏𝜏𝑤𝑤 = 1 + exp�−�𝑓𝑓 𝑑𝑑𝑑𝑑
𝑡𝑡

0

��𝜏𝜏𝑤𝑤,0 − 1 +  𝑐𝑐 � exp��𝑓𝑓 𝑑𝑑𝑑𝑑
𝜄𝜄

0

� 𝑑𝑑𝑑𝑑
𝑡𝑡

0

 � (25) 

 
Particularly for a constant velocity gradient: 
 

𝜏𝜏𝑤𝑤 = exp(−𝑓𝑓𝑓𝑓) �𝜏𝜏𝑤𝑤,0 − 1� + 1 +
𝑐𝑐(1 − exp(−𝑓𝑓𝑓𝑓))

𝑓𝑓
 (26) 
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