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Abstract - In this study, two-dimensional steady-state simulations of laminar natural convection of Rayleigh Benard in square enclosure 
were performed. The enclosure is considered to be completely filled with a yield stress fluid obeying visco-plastic model Bingham. The 
vertical lateral walls are thermally isolated, whereas sinusoidal temperature distributions with different amplitudes and phases are 
imposed over the horizontal walls. Fluid flow and heat transfer characteristics are systematically studied over a wide range of Rayleigh 
number Ra (103 - 106), and Bingham number Bn(0-20). We have fixed the Prandtl number (Pr = 7), Phase deviation ϕ = 0 and finally 
amplitude ration Ɛ = 1. The Navier-Stokes equations, the mass and energy conservation equations, are solved numerically using CFD 
software FLUENT. The results shows that the Nusselt number decreases with the increase of the Bingham number, and for the large 
values of the latter the heat transfer is done by conduction. It is also noteworthy that the increase in the phase difference and the amplitude 
ratio leads to the increase in the heat transfer. 
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1. Introduction 

Viscoplastic fluids, defined by a yield stress τy, are known to exhibit a complicated transition between solid and fluid 
behaviour. If the material is not sufficiently strained, i.e. less than the yield stress, it does not flow and acts as a solid. It flows 
with shear-thinning behaviour above the yield stress. The inelastic Bingham [1], Herschel-Bulkley [2] and Casson [3] models 
are the most often employed for characterizing viscoplastic fluids. The Bingham model is the most basic approach for dealing 
with yield stress and it is the most commonly utilized model in theoretical and numerical investigations due to its relative 
simplicity. Natural convection in an enclosure [4-6] may be seen in various applications such as electronic equipment cooling, 
building cooling and heating, solar heaters, energy drying processes etc. Rayleigh-Bénard Convection (RBC) is a buoyancy-
driven instability that occurs in a fluid layer heated from below and subjected to a temperature gradient. This arrangement 
occurs frequently in nature as well as in industrial processes, justifying the substantial amount of research committed to its 
comprehension. Refs [7-9] have been providing reviews for over a century, particularly in the case of Newtonian fluids. In 
comparison to the Newtonian case, the RBC in viscoplastic fluids has received less attention. However, interest in RBC in 
viscoplastic fluids has grown in recent decades, leading to theoretical and computational research [10-13]. There is also one 
of the most classic cases which is a differentially heated cavity filled with Bingham Fluids [14,15], where the vertical walls 
have different temperatures while the other walls (top and bottom) are adiabatic.   

The present work aims to investigate a more complicated natural Rayleigh-Bénard convection in an enclosure with two 
sinusoidal temperature profiles on the top and the bottom walls, the enclosure is considered to be completely filled with a 
flow stress fluid obeying the Bingham model. The results indicate that the Nusselt number decreases with the increase of the 
Bingham number, and for the large values of the latter the heat transfer is done by conduction, also the increase in the phase 
difference and the amplitude ratio leads to the increase in the heat transfer. 
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2. Numerical methods 
FLUENT, a commercial CFD software, provides the numerical model. Subject to the suggested boundary 

conditions, the conservation equations are discretized using a finite-volume technique based on the SIMPLEC algorithm. 
The second-order upwind differencing method is used to discretize the equations. Finally, the convergence requirements 
for solving the governing equations are regarded met when the sum of the residuals is less than 10-5. 

 
2.1. Geometry and boundary conditions 

fig 1 presents the schematic diagram of the domain which the simulations will be run. Where thermal isolation 
exists between the vertical lateral walls, and the horizontal walls exhibit sinusoidal temperature distributions with 
varying amplitudes and phases. We make certain approximations and simplifying assumptions to reduce and simplify 
the mathematical formulation of the model and facilitate its resolution. Two-dimensional flow is assumed to be 
permanent; fluid flow is assumed to be incompressible and laminar, and finally thermo-physical properties of the fluid 
are constant, except for apparent viscosity, which varies according to the viscoplastic model, the Boussinesq 
approximation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Layout of the simulation domain. 
 

2.2. Mathematical formulation 
The steady-state conservation equations for mass, momentum, and energy in incompressible fluids are as follows. 

Continuity equation: 
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Momentum equations:            
These equations are translated according to the Navier-Stokes equations. 
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The energy equation: 
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These variables have been used to make the above equations dimensionless  
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The Bingham model is governed by the following equations: 
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Dimensionless Rayleigh number: 
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Dimensionless Grashoff number:  
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Dimensionless Prandtl number: 
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λ

=                                                                               (8)  

Dimensionless Bingham number: 
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Boundary conditions are as follows: 
At the top   u v 0= = , ( )sin 2 x=θ π  
At the bottom of the domain  u v 0= = , ( )sin 2 xθ ε π φ= +  
The vertical walls   u v 0= =  , dT 0

dy
=   

Where Ɛ = AR/ Al is the amplitude of the sinusoidal temperature which is at the bottom and at the top of the cavity, 
with AR being the aspect ratio and AR = H / L et Al = Th – Tc 
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2.3 Validation  
To validate our results, we compared them with those of the literature, namely the work of references [4] and [13]. A 

good argument has been noted between our numerical results and those of the articles [4] and [13]. 

            
Fig 2: Comparison of numerical result obtained (left) with [4] (right) of the Effect of Rayleigh number on the isotherms at Ra = 

103, Bn = 0, Pr = 0.7, ɸ = 0 and Ɛ = 1. 
 

Table 1: Nusselt validation [13]  
 Bn = 1 Bn = 3 Bn = 6 Bn = 9 Bn = 18 Bn = 27 

Ra = 105       
Huilgol [13] 3.303 3.263 3.083 2.898 2.402 2.143 
Present work 3.305 3.265 3.083 2.900 2.403 2.140 

 
3 Results and discussion 
 
3.1 Effect of Rayleigh number  

At low Rayleigh number, Ra = 103, convection is very weak and therefore heat transfer is dominated by the mechanism 
of conduction, as shown by the isotherms. As the Rayleigh number increases up to Ra = 105, the structure of the isotherms 
as well as the streamlines start to change for Bingham fluid as seen in Fig 3. We observe that the streamlines are in the form 
of one cell, but the shape of this cell changes and deforms with the increase of the Rayleigh number. Obviously, at this point, 
triggers convection. 

 
(a) : Ra = 103  
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(b) : Ra = 104 ;  

 
(c): Ra = 105  

 
(d) : Ra = 106  

Fig 3 : Contours of isotherms (left) and streamlines (right) of the Bingham fluid 
 for Bn = 0,5 ; Pr = 7 ; ɸ = 0 ; Ɛ = 1. 

3.2 Effect of Bingham number 
For high values of the Bingham number, the viscous force more easily overcomes the buoyant force and therefore no 

flux is induced inside the enclosure. This behaviour can be better understood by comparing the contours of the streamlines 
and non-dimensional isotherms shown in Fig 4 for different values of Bn at Ra=106. These figures suggest that the effects of 
convection inside the enclosure decrease with increasing Bn and as the Bingham fluid begins to behave like a solid, the fluid 
velocities drop to values so low that for all intents and purposes, the fluid is essentially stagnant. In the absence of flux in 
the enclosure, heat transfer takes place by conduction. 
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(a): Ra = 106 ; Bn = 0  

 
(b): Ra = 106 ; Bn = 3 

 
(c): Ra = 106 ; Bn = 5  

 
(d): Ra = 106 ; Bn = 10  
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(f): Ra = 106 ; Bn = 20  

Fig 4 : Contours of isotherms (left) and streamlines (right) of the Bingham fluid 
 for Pr = 7 ; ɸ = 0 ; Ɛ = 1. 

 
3.3 Heat transfer quantification  

The variation of Nusselt number is shown in fig 5 . The results reveal that the Nusselt number drops as the Bingham 
number increases, and that for large values of the latter, heat transmission occurs by conduction. It is also worth noting that 
increasing the phase difference and amplitude ratio increases heat transmission. 

 

           
Fig 5: Effect of the phase deviation (ɸ) and the amplitude ratio (Ɛ) on the average Nusselt  

for Ra = 106, Pr = 0.1 ɸ = 0 and Ɛ = 1 respectively  
 

 
4 Conclusion 

This work concerns a numerical study of the two-dimensional natural Rayleigh benard convection of a non-Newtonian 
viscoplastic fluid. The viscoplastic behaviour is described by the Bingham model. The two-dimensional convective flow 
considered is confined in a cavity, where vertical walls are thermally insulated and the horizontal walls have two sinusoidal 
temperatures. The Navier-Stokes equations, the mass and energy conservation equations, are solved numerically using an 
industrial numerical simulation code CFD: FLUENT.  

• The Nusselt number decreases with the increase of the Bingham number, and for the large values of the latter the 
heat transfer is done by conduction. 
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• The increase in the phase difference leads to the increase in the heat transfer, with regard to the influence of the 
phase deviation on the Nusselt. It is observed that from the values, the heat transfer rate is improved for ɸ = π. 

• Heat transfer increases as the amplitude ratio increases. The heat transfer rate for Ɛ = 1 is higher than in the other 
cases. 
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