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Abstract - Ubiquitous in many natural and engineering flows, Rayleigh-Taylor (RT) instability and the ensuing turbulence develop 
when heavy fluid is placed on top of light fluid under gravity. Compared to the miscible cases, RT instability between two immiscible 
fluids encompasses more complex physics due to the presence of the sharp interface. To elucidate its physical mechanism, we perform 
direct numerical simulations using the volume of fluid approach and analyse their dynamical evolution, including statistics such as the 
kinetic energy and vorticity budgets, droplet size distribution, and the turbulent anisotropy. We show that the surface tension 
contribution is negligible for mean kinetic energy, but it plays a major role in the mean vorticity budget. During the immiscible RT 
evolution, the distribution of droplet sizes follows the -10/3 scaling in compatible with the Kolmogorov-Hinze theory for isotropic two-
phase turbulence, although the flow is inhomogeneous and anisotropic. Numerical results further show that the droplets are effective in 
modulating both large-scale and small-scale flow quantities. 
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1. Introduction 

High Reynolds number flows involving two or more immiscible phases find important applications in many 
natural and engineering systems such as atmospheric and oceanic flows [1], combustion [2], food processing [3], and 
pharmaceuticals [4]. Central topics of multiphase turbulence are the transport and mixing of different species, which 
depend on the droplet/bubble size distribution arising from the turbulence coupling with the breakup and coalescence 
processes. Better understandings of the droplet/bubble statistics could in principle improve the design of industrial 
applications for food emulsification [5], oil recovery [6], and clean power generation [7]. 

Turbulent two-phase flows in homogeneous and isotropic configurations have been studied extensively via direct 
numerical simulations (DNS) [8-11]. For example, Dodd and Ferrante [8] performed DNS of decaying isotropic two-
phase turbulence with varying Weber numbers, densities and viscosity ratios using the volume-of-fluid (VOF) 
approach. They quantitatively characterized the kinetic energy exchange pathways between the carrier phase and the 
droplet phase, and found that droplets enhance the dissipation rate of turbulent kinetic energy by enhancing the local 
velocity gradients near the interface. The power of surface tension could act as a sink or a source for kinetic energy 
depending on the sign of the rate-of-change of the total droplet surface area. Mukherjee et al. [9] performed DNS of 
homogeneous isotropic emulsions using lattice Boltzmann method, and proposed a generalized Hinze scale based on a 
Weber number spectrum. They further identified a time-delayed quasi-equilibrium cycle in the state-space of the 
system comprising kinetic energy, enstrophy, and the droplet number density. Perlekar’s phase-field pseudo-spectral 
simulations [10] indicate that the interfacial terms provide another route for turbulent energy cascade, and the statistics 
associated with velocity-gradient tensor does not change with the Weber number. Crialesi-Esposito et al. [11] 
simulated the iso-density emulsions with different volume fractions, viscosity ratios, and Weber numbers using the 
VOF approach, and confirmed the forward energy cascade by performing a scale-by-scale analysis. These findings 
greatly improve our fundamental understanding of multiphase turbulence, and provide insights for studying more 
complicated, real-world multiphase flows. 

Besides homogeneous, isotropic cases, studies on immiscible two-fluid turbulence in more complicated 
configurations start to emerge recently. Yi et al. [12] experimentally investigated the droplet size distribution and the 
physical mechanism of droplet breakup in turbulent Taylor-Couette flows. They introduced an effective viscosity in 
high volume-fraction systems and related it to the droplet statistics. Rosti et al. [13] numerically verified that the Hinze 
maximum stable droplet size estimation is valid in a two-phase turbulent shear flow, even though the Hinze theory 
assumes isotropic turbulence and no coalescence. Trummler et al. [14] studied the segregation of turbulent emulsions 
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under gravity and identified different roles played by gravity and droplet coalescence. The timescale of the segregation is 
proposed using dimensional arguments.  

Although the above investigations in non-isotropic configurations have addressed a few issues, many important 
questions are still open. For example, real-world problems are usually time-dependent, and it is important to characterize 
how the droplet size distribution varies in time. In addition, understanding the evolution of vorticity and strain in a time-
dependent multiphase turbulence would help gain insights into the small-scale flow physics. To address these questions, 
we perform direct numerical simulations and consider a classical problem, the Rayleigh-Taylor (RT) turbulence between 
two immiscible fluids with comparable densities. The RT instability occurs when a heavy fluid is placed on top of a light 
one and develops coherent bubble and spike structures, leading to a devolving multiphase turbulence. We then analyse the 
statistics of RT turbulent flows, focusing on the vorticity evolution, droplet size distribution, and its associated dynamics. 

The following sections are organized as follows. In section 2 we present the governing equations and numerical 
methods for our direct numerical simulation. In section 3 we show the results and analysis, including flow visualizations, 
the energy and enstrophy budgets, and the droplet statistics. In section 4 we summarize and conclude our paper. 

 
2. Numerical Methods 

We adopt the Volume of Fluid approach to perform the direct numerical simulation of immiscible two-phase 
Rayleigh-Taylor turbulence, the governing equations include the equations of continuity, momentum, and the marker 
function advection, which read 

 (1) 

 
(2) 

 
(3) 

where  are the density, velocity, and marker function, respectively.  are the gravitational acceleration, 
surface tension coefficient, and the interface curvature,  is the viscous stress tensor, with  the 
dynamic viscosity.   

 

The simulations are conducted with the open-source package PARIS (PArallel, Robust, Interface Simulator) [15], 
which is design for simulating multiphase flows and has been widely adopted to study atomization [16], multiphase mixing 
layer [17,18], and segregation [14]. The code advances in time using a second-order predictor-corrector scheme, while for 
spatial discretization the viscous term is calculated explicitly with a second-order central difference and the Superbee 
limiter is applied in the flux calculation. A finite-volume staggered grid is adopted where the velocity fields are stored on 
cell faces and marker function as well as pressure are stored at cell centres. The pressure Poisson equation is solved with 
the PFMG multigrid solver. More details on the numerical schemes can be found in reference [15]. 

For the Rayleigh-Taylor simulations, the domain is set to be , which is discretised into 
uniform cells with cell number . The initial conditions are set with heavy fluid on top of light fluid, with 
the initial interface horizontal and a small perturbation imposed. In this paper, we choose the densities of heavy and light 
fluids to be , and thus the non-dimensional Atwood number is . We 
simulate two cases with the heavy fluid volume fraction to be  and  respectively, denoted by run_95 
and run_05 respectively, where  is the marker function for the heavy fluid and  denotes the spatial mean value. The 
kinematic viscosity and the surface tension coefficient are . The boundary conditions are 
set to be no-slip walls at the top and the bottom, and periodic conditions are imposed on lateral boundaries.We run the two 
Rayleigh-Taylor cases run_95 and run_05 from the onset till the decaying stage of the instability. The following sections 
show the visualizations and statistics of the simulation results. 

 
3. Results 

In this section, we present simulation results and the turbulent statistics, focusing on the droplet size distribution and 
the role of vorticity in the evolution of the Rayleigh-Taylor instability.  
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3.1. Flow visualization and bulk statistics 

We show the flow visualizations in figure 1, in which panels (a)-(c) are from the case run_95 where the volume 
fraction of the top heavy fluid is 0.95, and panels (d)-(f) are from the case run_05 where the volume fraction of the top 
heavy fluid is 0.05. We observe droplets creation during the evolution of the RT instability in both cases, and the 
droplet density varies in time and in space, which we shall quantify in later sections.  

   
                                              (a)                                                  (b)                                                  (c) 

   
                                              (d)                                                   (e)                                                    (f) 

 
Fig. 1: Visualizations of the density field for the two simulation case, (a)-(c) are from run_95, and (d)-(f) are from run_05. (a),(d) are 

selected at dimensionless time , (b),(e) at , and (c),(f) at  

 
 
For a quantitative description of the flow, we first show the budget of kinetic energy and vorticity. The bulk 

kinetic energy (KE) balance equation is: 

 
where  is the surface tension, and  denotes spatial averaging. Terms on the right-hand side denotes viscous 
dissipation, power of surface tension, and potential energy injection, respectively. The budgets of the two simulation cases 
are shown in figure 2, in which the time is normalized as . 
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Fig. 2: The evolution of kinetic energy budget, normalized by the mean kinetic energy growth rate . Left figure is for case 

run_95, and the right figure is for run_05. 
 

From figure 2, the major part of the injected potential energy is balanced by viscous dissipation, and the time 
derivative of total KE is positive at early time and negative at later time, indicating that KE increases during the developing 
stage and decreases at the decaying stage of RT. In contrast, the mean power of surface tension is negative at the 
developing stage and acts as a sink for KE, while it is positive at the decaying stage and acts as a source for KE, in 
accordance with reference [8]. The magnitude of mean surface tension is small compared to other terms, but its local 
contribution could be large as indicated by its probability density function (not shown here).   

The vorticity budget is represented by the enstrophy evolution equation 

 
 

where on the right-hand side, the first term denotes the vortex stretching contribution, the second term denotes the 
baroclinic vorticity generation, the third term is viscous contribution, while the last term is vorticity generation by surface 
tension. 

    
Fig. 3: The evolution of enstrophy budget. Left figure is for case run_95, and the right figure is for run_05. 

 
Figure 3 shows the evolution of enstrophy budget. The time derivative of enstrophy, similar to KE, is positive at early 

stage as the instability develops, and attains negative values at late stage when the instability decays. Both the baroclinic 
term and the viscous term are large in magnitude but with opposite signs, and they are singly-peaked with a small-time lag 
between the two peaks. Similarly, the vortex stretching term and the surface tension term are opposite in sign with 
relatively smaller magnitude. The cancelling effect between these four terms leads to the alternating positive-negative 
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values in the time derivative of enstrophy. In contrast to the mean KE budget where surface tension contribution is 
negligible, it plays a major role in the enstrophy budget, indicating that surface tension is more important at small 
compared to large scales. 

 

   
                                                      (a)                                                                                                          (b) 

Fig. 4: Autocorrelation coefficients of the volume fraction and velocity. Panel (a) is for case run_95, while panel (b) is for run_05. 
 
To characterize the anisotropy of the immiscible RT instability, we measure the autocorrelation coefficients of the 

volume fraction field  and the velocity field , which are defined as  

 
Figure 4 shows the results of the autocorrelation, with the subscript  in the figure denoting either  or  direction. The 
results correspond to separation vector  along the  and  directions almost overlap, but are different from the results 
along the  direction. This behaviour indicates isotropy in the horizontal plane, but anisotropy exists between the 
horizontal and the vertical directions. Note that the correlation coefficient does not go to zero at large separation distances 
for the volume fraction field, indicating that the volume fraction field is not fully turbulent for the current configuration. 
 
3.2. Droplet distribution and dynamics 

To gain insights into the physics of immiscible RT turbulence, we measure the droplet distribution and delineate 
the underlying physics in this subsection. The time evolution of the number of droplets is shown in figure 5, in which 
both simulation cases follow a similar pattern. The total number increases till maximum values attained around , 
and then decreases in the decaying stage of RT instability. More refined information can be inferred from figure 1, 
where droplets of different sizes can be observed at different time instants. 

 

     
Fig. 5: Number of droplets versus time. Left panel is for case run_95, while right panel is for run_05. 

 
To quantify the sizes of droplets, we obtain in figure 6 the probability density functions (PDFs) of droplet 

diameter  at each of the three instants , corresponding to the developing stage, the maximum 
droplet number instant, and the decaying stage of RT. A scaling in compatible with the Kolmogorov-Hinze 
theory is included. The PDFs show that the difference between the three instants is mainly at the tail of the PDFs 
corresponding to large droplets.  A general trend is that the number of large droplets decreases in time, while the size 
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distribution of small droplets remains unchanged. At  and  the  scaling is realized within a small 
diameter range, indicating that, although the isotropic assumption is invalid, the result of Kolmogorov-Hinze theory for 
for droplet size distribution is applicable to the inhomogeneous anisotropic Rayleigh-Taylor turbulent flows.  

  

  
Fig. 6: PDFs of droplet diameter  at three instants. Left panel is for case run_95, and right panel is for run_05. 

 

 
 

 
 

Fig. 7: Joint PDFs of droplet diameter  with its center  location at three instants. Top three panel are for case run_95, while the 
bottom three panels are for run_05. The three colums correspond to time , respectively. 

 
The spatial distribution of droplets is demonstrated in figure 7, in which the joint PDFs between the droplet diameter 

and the  location of droplet centers are plotted. For the case run_95, the heavy-light fluid interface tends to rise from the 
bottom to the top, and thus the generated droplets migrate upwards; while for the case run_05, the heavy-light fluid 
interface sinks from the top to the bottom, and thus the droplets migrate downwards. It is also confirmed (not shown here) 
that the z-location of the large diameter droplets (the z-location of the peak in each of the joint PDFs in figure 7) resides 
upstream of the maximum turbulent intensity, indicating that turbulent fluctuations tend to distort the large droplets and 
lead to break up into smaller droplets. 

As for the dynamics of the droplets, we shown in figures 8 and 9 the joint PDFs of diameter with the mean vertical 
velocity and the mean enstrophy corresponding to each droplet. Large droplets are associated with large mean  (in 
magnitude) and large mean enstrophy, highlighting the role of large droplets in modulating both large-scale velocity and 
small-scale vorticity. 
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Fig. 8: Joint PDFs of droplet diameter  with the droplet mean vertical velocity. Top three panel are for case run_95, while the bottom 

three panels are for run_05. The three colums correspond to time , respectively. 
 

 
 

 
Fig. 9: Joint PDFs of droplet diameter  with the droplet mean enstrophy. Top three panel are for case run_95, while the bottom three 

panels are for run_05. The three colums correspond to time , respectively. 
 
 

4. Conclusion 
In this short paper, we investigate the statistics and dynamics of immiscible two-fluid Rayleigh-Taylor turbulence. 

We find that the surface tension term plays little role in the large-scale mean kinetic energy budget, but is important in 
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the small-scale mean enstrophy budget. The immiscible Rayleigh-Taylor turbulence is anisotropic along the horizontal and 
vertical directions as measured by the autocorrelation of volume fraction and velocity fields. From the droplet statistics, we 
find that the -10/3 Kolmogorov-Hinze scaling is still applicable, and the droplet spatial distribution is inhomogeneous and 
depends on the turbulent intensity which enchances large droplet breakup. The large droplets are associated with large 
velocity and vorticity magnitude, emphasizing its role in both large- and small-scale dynamics of RT turbulence. 
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