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Abstract – Perforation and penetration mechanics research is mostly governed by experimental and numerical investigations while 
analytical models are less available due to the extremely complicated nature of the subject. Sufficiently thick ductile targets are perforated 
by rigid, nose-pointed projectiles in a ballistic process whose dominant failure mode is ductile hole enlargement. Several recent studies 
have shown that for perforation process by ductile hole formation, the specific cavitation energy, which reflects the target material 
resistance to steady hole expansion, is essential for analytical predictions of ballistic limit velocities. The ballistic limit velocity is the 
minimum impact speed that is required for complete perforation of a given target by a given projectile. A logarithmic formulation for the 
specific cavitation energy of metal targets, which is based on the concepts of (spherical cavitation) effective yield stress and hole 
slenderness ratio, is shown in several recent studies to be very useful for analytical predictions of ballistic limit velocities. The logarithmic 
formulation for the specific cavitation energy is presented, and the concepts of cavitation effective yield stress and hole slenderness ratio 
are reviewed and discussed regarding their importance for accurate analytical predictions of ballistic limit velocities. The present article 
is a review of these two concepts and their usefulness in perforation mechanics.  
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1. Introduction 

The resistance of a target material to penetration is the most critical parameter when designing protective systems. The 
dominant failure mode of a protective system depends on the characteristics of projectile and shielding and on the impact 
conditions. Perforation and penetration mechanics research is governed by experimental and numerical studies while 
analytical models are less available due to the extremely complicated nature of the subject [1]. The present paper is focused 
on a review of an analytical model for perforation by ductile hole growth process, in which a near-rigid, pointed-nose 
projectile is impacting a softer ductile target. The ballistic limit velocity 𝑉𝑉𝑏𝑏 is the projectile minimum impact speed that is 
required for complete perforation of the target (without a residual velocity upon exiting the target). In the present paper a 
recent ballistic model, which was shown to be very useful for analytical predictions of ballistic limit velocities, is reviewed.       

Analytical methods for ductile hole enlargement date back to the pioneering studies by Bishop, Hill and Mott [2] and 
Hill [3], where spherical and cylindrical cavity expansion models were used for estimation of the material hardness. Later, 
plane-strain, cylindrical cavity expansion models [4-11] have been shown to provide accurate ballistic limit predictions only 
for perforation of ductile targets under plane-strain conditions. However, such plane-strain models are not accurate enough 
for ballistic limit predictions in other stress-state conditions. The cavity expansion analysis under plane-stress conditions 
[12] has shown that the specific expansion energy, supplied by the internal pressure for creating a new hole volume unit, 
approaches an asymptotic value. This energy saturation level, which is identified (in section 5 of [12]) with cavitation 
pressures for plane-strain and spherical deformation patterns, reflects the resistance of the material target to steady hole 
expansion, and is denoted in [12] as the specific cavitation energy 𝑠𝑠𝑐𝑐. 

During a perforation process, recoverable elastic energy and dissipated plastic energy consume the work done by the 
projectile for creating the penetration tunnel. For near-rigid, nose-pointed projectiles that penetrate softer ductile targets, this 
elastoplastic work can be approximated with the aid of the specific cavitation energy 𝑠𝑠𝑐𝑐, and the ballistic limit velocity 𝑉𝑉𝑏𝑏 can 
be predicted by a simple energy balance (see section 2). The hole slenderness ratio (the ratio between plate thickness ℎ and 
projectile shank diameter 𝐷𝐷, namely ℎ/𝐷𝐷) is observed in [13] to affect the specific cavitation energy and the ballistic limit 
velocity. The heuristic approach in [14] has inspired a logarithmic expression for 𝑠𝑠𝑐𝑐 of monolithic metal targets, which 
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considers the hole slenderness ratio effect. In this logarithmic formulation the spherical cavitation effective yield stress 
(𝑌𝑌𝑐𝑐𝑆𝑆) is shown to play an essential role. Comprehensive comparisons to experimental data in [14-16] have shown that 
the logarithmic formulation of 𝑠𝑠𝑐𝑐  leads to accurate predictions of ballistic limit velocities, and in [17] it is observed that 
the accuracy of the analytical predictions is at least comparable to the accuracy of numerical simulation results. In the 
study [18], four ductile hole enlargement models have been compared for their ability to predict ballistic limits of 
aluminium plates impacted by 7.62 mm armour piercing bullets (APM2 bullets) at normal incidence. A very large 
database of ballistic limit tests (more than 1600 experimental results for 24 different aluminium alloys) is used to 
evaluate the accuracy of these four models. The best performing model is found to be the logarithmic formulation for 𝑠𝑠𝑐𝑐 
suggested in [14], which depends on the effective yield stress 𝑌𝑌𝑐𝑐𝑆𝑆 and considers the hole slenderness ratio ℎ/𝐷𝐷. 

While the logarithmic formulation of 𝑠𝑠𝑐𝑐 is valid for an arbitrary stress-strain relation, due to the general definition 
of the (spherical cavitation) effective yield stress 𝑌𝑌𝑐𝑐𝑆𝑆, which is based on the classical Lambert function [19], further 
approximate expressions of 𝑌𝑌𝑐𝑐𝑆𝑆 are given in [17] for several strain-hardening laws, in terms of classical functions from 
mathematical physics (Riemann Zeta, Euler Gamma, polylogarithm and Gauss hypergeometric functions).The 
logarithmic formulation of 𝑠𝑠𝑐𝑐 is presented in section 2.1, the concept of the effective yield stress is discussed in section 
3 and the hole slenderness ratio effect is discussed in section 4.  

 
2. Analytical Prediction of Ballistic Limit Velocity 

Ballistic limit velocity of a (thick enough) ductile protective plate of thickness ℎ, perforated at normal incidence by 
a near-rigid, nose-pointed projectile of mass 𝑀𝑀 and shank diameter 𝐷𝐷 (Fig. 1), can be estimated by an energy-balance. 
The elastoplastic work, consumed in expanding the perforation tunnel, can be approximated by 

 

𝑊𝑊 = �
𝜋𝜋𝐷𝐷2

4
h� 𝑠𝑠𝑐𝑐 (1) 

 
where the specific cavitation energy 𝑠𝑠𝑐𝑐 reflects the target material resistance to quasi-static expansion of the perforation hole. 
The ballistic limit velocity 𝑉𝑉𝑏𝑏 of a ductile monolithic plate is obtained by equating the work done by the projectile in 
expanding the perforation tunnel, Eq. (1), with the projectile ballistic limit kinetic energy 1

2
𝑀𝑀𝑉𝑉𝑏𝑏2 (after [12]) 

 

𝑉𝑉𝑏𝑏 = �2𝑅𝑅𝑡𝑡/𝛾𝛾𝑝𝑝           𝑅𝑅𝑡𝑡 = ℎ𝑠𝑠𝑐𝑐          𝛾𝛾𝑝𝑝 =  
4𝑀𝑀
𝜋𝜋𝐷𝐷2  (2) 

 
Parameter 𝛾𝛾𝑝𝑝 is the projectile areal density, which reflects the projectile perforation potential, and 𝑅𝑅𝑡𝑡 is the (combined) target 
perforation resistance, of target material and thickness, to quasi-static cavitation of the perforation tunnel. 

Fig. 1: Plate of thickness ℎ is perforated by a nose-pointed projectile of mass 𝑀𝑀 and shank diameter 𝐷𝐷 (figure is taken from [12]). 



 
 

 
 

 
 

 
ICMIE 107-3 

2.1. Logarithmic Formulation of the Specific Cavitation Energy 𝒔𝒔𝒄𝒄 
  The specific cavitation energy concept has been used in [14] to demonstrate the ballistic equivalence of several 

aluminium alloys (similar ballistic limits for the same threats), and this observation has inspired a heuristic approach in [14] 
[14] that leads to the following logarithmic formulation of 𝑠𝑠𝑐𝑐  for monolithic ductile targets 

 

𝑠𝑠𝑐𝑐 =
𝑌𝑌𝑐𝑐𝑆𝑆

√3
�1 + ln �

ℎ
3𝐷𝐷

𝐸𝐸
√3𝑌𝑌𝑐𝑐𝑆𝑆

�� (3) 

 
where 𝐸𝐸 is the target elastic modulus. This formulation suggests a logarithmic effect of the hole slenderness ratio ℎ/𝐷𝐷 and 
reflects the essential role of the effective yield stress 𝑌𝑌𝑐𝑐𝑆𝑆 for ballistic limit predictions by formula (2). Due to this formulation 
of 𝑠𝑠𝑐𝑐 , different alloys of the same metal (namely alloys with practically the same elastic properties) are ballistically equivalent 
(namely have practically the same ballistic limits) if their effective yield stresses are close enough (see section 3). More 
general definition of two different targets (different materials and thicknesses) which are ballistically equivalent for the same 
threat are targets who have practically the same perforation resistance, namely 
 

𝑅𝑅𝑡𝑡1 = 𝑅𝑅𝑡𝑡1 ⇒ ℎ1𝑠𝑠𝑐𝑐1 = ℎ2𝑠𝑠𝑐𝑐2 (4) 
 
This definition for ballistically equivalent targets was validated by finite element simulations for aluminium and steel targets 
in [20] and is discussed in the next section. Here it should be mentioned that the cavitation pressure needed for steady 
cylindrical cavity expansion under plane-strain conditions [4-11, 21] is shown in [15], [17] and [20] to be suitable only for 
ballistic limit predictions under perforation conditions that are close to plane-strain (ℎ/𝐷𝐷 ≈ 3). However, the logarithmic 
formulation (3) is shown, by comprehensive comparisons to experimental data [14-18], to be accurate enough for ballistic 
limit predictions of many target/threat combinations and over a wide range of ℎ/𝐷𝐷 ratios. 
 
3. The Spherical Cavitation Effective Yield Stress 𝒀𝒀𝒄𝒄𝑺𝑺 
      The exact definition of the (spherical cavitation) effective yield stress 𝑌𝑌𝑐𝑐𝑆𝑆 was first given in [22]. The motivation in [22] 
was to suggest a well-defined way for approximating an arbitrary stress–strain response with an effective elastic/perfectly-
plastic behaviour, to simplify the analysis of dynamic spherical cavitation in metals. The definition of 𝑌𝑌𝑐𝑐𝑆𝑆 is based on equating 
the quasi-static spherical cavitation pressure for compressible Mises (Tresca) solid, which is characterized by an arbitrary 
stress–strain response, (the following expression is derived in [23] and reformulated in [14]) 
 

𝑝𝑝𝑐𝑐𝑆𝑆 = �
𝜎𝜎(𝜀𝜀)̅𝑑𝑑𝜀𝜀̅

exp �3
2 𝜀𝜀̅ − 𝑆𝑆� − 1 + 𝑆𝑆

∞

0

            𝑆𝑆 = 2𝛽𝛽
𝜎𝜎(𝜀𝜀)̅
𝐸𝐸

 (5) 

 
with its exact version for elastic/perfectly-plastic behaviour, where the constant yield stress 𝑌𝑌 is replaced by the effective 
yield stress 𝑌𝑌𝑐𝑐𝑆𝑆. Here 𝛽𝛽 = 1 − 2𝜈𝜈 is an elastic compressibility measure, with 𝜈𝜈 for Poisson ratio, and 𝜀𝜀̅ = 𝜀𝜀 + 𝛽𝛽 𝜎𝜎(𝜀𝜀)

𝐸𝐸
 with 𝜀𝜀 

for the effective elastoplastic (total) strain and 𝜎𝜎 = 𝜎𝜎(𝜀𝜀) is an arbitrary target material stress-strain curve. Hence, it is 
straightforward to calculate the function 𝜎𝜎(𝜀𝜀)̅ in the integrand of Eq. (5), and 𝑝𝑝𝑐𝑐𝑆𝑆 can be obtained for arbitrary stress–strain 
curves by simple numerical integration procedure. While the exact definition leads to a cumbersome implicit equation for 

𝑌𝑌𝑐𝑐𝑆𝑆,  a much compact form of this equation under the practical assumption 𝑌𝑌𝑐𝑐
𝑆𝑆

𝐸𝐸
≪ 1 is (after [22]) 
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 The following closed-form expression for the physical solution of 𝑌𝑌𝑐𝑐𝑆𝑆 is recently derived in [19] 
 

𝑌𝑌𝑐𝑐𝑆𝑆 = −
3𝑝𝑝𝑐𝑐𝑆𝑆

2𝑊𝑊−1(𝑥𝑥)            𝑥𝑥 = −
9(1 + 𝛽𝛽)𝑝𝑝𝑐𝑐𝑆𝑆

4𝑒𝑒𝐸𝐸
 (7) 

 
where 𝑊𝑊−1(𝑥𝑥) is the non-principal branch of the Lambert function. The Lambert function is a classical function 
from mathematical physics with many applications, and the use of this function here eliminates the need for 
solving the physical value of 𝑌𝑌𝑐𝑐𝑆𝑆 from Eq. (6) by numerical procedure. Further useful approximations of 𝑌𝑌𝑐𝑐𝑆𝑆 are 
given in [17] for common strain-hardening laws in terms of different classical functions from mathematical 
physics (Riemann Zeta, Euler Gamma, Polylogarithm and Gauss hypergeometric functions). As an example, for 

the modified Ludwik power-hardening law 𝜎𝜎 = 𝑌𝑌 � 𝜀𝜀
𝜀𝜀𝑦𝑦
�
𝑛𝑛

(for  𝜀𝜀 ≥ 𝜀𝜀𝑦𝑦), where 𝜀𝜀𝑦𝑦 = 𝑌𝑌/𝐸𝐸 is the target yield strain 

and 𝑛𝑛 is the hardening exponent, a tight lower bound for the exact value of 𝑌𝑌𝑐𝑐𝑆𝑆 is obtained by 

 

   

𝑌𝑌𝑐𝑐𝑆𝑆 = �1 +
𝜙𝜙𝑛𝑛𝐹𝐹(𝑛𝑛) − 1

𝑛𝑛 − ln (𝜙𝜙)

ln � 𝜙𝜙
1 + 𝛽𝛽�

�𝑌𝑌            𝜙𝜙 =
2

3𝜀𝜀𝑦𝑦
            𝐹𝐹(𝑛𝑛) = ζ(1 + 𝑛𝑛)Γ(1 + 𝑛𝑛) (8) 

  
where ζ and Γ are the well-known Riemann Zeta and Euler Gamma functions, and 𝐹𝐹(𝑛𝑛) ≃ 1/𝑛𝑛 + 0.73𝑛𝑛 for common metals 
[15]. The definition of 𝑌𝑌𝑐𝑐𝑆𝑆 suggests an effective elastic/perfectly-plastic response with the same quasi-static spherical 
cavitation pressure 𝑝𝑝𝑐𝑐𝑆𝑆 (and the same elastic properties 𝐸𝐸 and 𝜈𝜈) as of the actual metal with the true stress–strain curve. In 
[14] it is shown that 𝑌𝑌𝑐𝑐𝑆𝑆 lumps different strain-hardening responses of five aluminium alloys into similar effective yield 
stresses of about 337 MPa (Fig. 2), and those alloys were shown in [14], by experimental data, to be ballistically equivalent. 

Fig. 2: Left - Stress-strain curves of five ballistically equivalent aluminium alloys. The dashed line represents the effective 
elastic/perfectly-plastic response with an effective yield stress of 337 𝑀𝑀𝑀𝑀𝑀𝑀. Right - Three 𝑌𝑌𝑐𝑐𝑆𝑆  curves in an (𝑛𝑛, 𝑌𝑌) coordinate system, due 
to formula (8), for different aluminium alloys with 𝐸𝐸 = 70 𝐺𝐺𝑀𝑀𝑀𝑀 and 𝜈𝜈 = 1/3. The points (𝑛𝑛, 𝑌𝑌) of the five ballistically equivalent 
aluminium alloys in the left figure are shown to be near the 𝑌𝑌𝑐𝑐𝑆𝑆 = 337 𝑀𝑀𝑀𝑀𝑀𝑀 curve (Both figures are taken from [14]). 
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      Comprehensive finite element simulations study is performed in [20] for validating the general definition of two 
ballistically equivalent targets (4) by using abrasion resistant steel targets (Hardox 400), high-strength aluminium alloy 
targets (AA6061-T651) and annealed aluminium alloy targets (AA6070-O) that are perforated by projectiles which simulate 
the steel core of a 7.62 mm APM2 bullet. In Fig. 3 the model which is based on the logarithmic formulation (3) leads to 
practically ballistic equivalence between the steel and the aluminium targets, while the general formula for the Mises plane-
strain cylindrical cavitation presssure (derived in [21] and reformulated in [14]) 
 

𝑝𝑝𝑐𝑐𝑀𝑀 = �
𝜎𝜎(𝜀𝜀)̅𝑑𝑑𝜀𝜀̅

exp�√3𝜀𝜀̅ − 𝑆𝑆� − 1 + 𝑆𝑆

∞

0

            �̅�𝜀 = 𝜀𝜀 + 0.65𝛽𝛽
𝜎𝜎(𝜀𝜀)
𝐸𝐸

          𝑆𝑆 = 1.7𝛽𝛽
𝜎𝜎(𝜀𝜀)̅
𝐸𝐸

 (9) 

 
is not good enough for accurate analytical predictions of ballistic limit velocities. 

Fig. 3: Comparing numerical simulation predictions 𝑉𝑉𝑏𝑏(𝑁𝑁1) of ballistic limits for 4.0 to 7.0 mm Hardox 400 plates with numerical ballistic 
limit predictions for ballistically-equivalent AA6070-O plates (on the left) and AA6061-T651 plates (on the right), determined by using 
the logarithmic (L) (Eq. (3)), integral (I), and plane-strain (PS) (Eq. (9)) variants for 𝑠𝑠𝑐𝑐 (Both figures are taken from [20]). The integral 
formulation of 𝑠𝑠𝑐𝑐 has not discussed in the present paper (for details on this formulation refer to [15-17]). 
 
      In [19] it is suggested that for common metals, the value of the ‘material’ parameter 𝑥𝑥 in formula (7) is likely to be in the 
range −5 ⋅ 10−2 < 𝑥𝑥 < −0.4 ⋅ 10−2. Here it is added that by suggesting the approximation 𝑊𝑊−1(𝑥𝑥) ≃ 𝑀𝑀 + 𝑏𝑏𝑏𝑏𝑛𝑛(−𝑥𝑥) and 
determining the constants 𝑀𝑀 and 𝑏𝑏 by the requirement that this approximation will be exact at the lower and the upper 
boundaries 𝑥𝑥 = −5 ⋅ 10−2 and 𝑥𝑥 = −0.4 ⋅ 10−2, the approximation obtained is 𝑊𝑊−1(𝑥𝑥) ≃ −0.8915 + 1.2045 ln(−𝑥𝑥). 
Substitution of this approximation in (7) leads to an excellent tight upper bound for 𝑌𝑌𝑐𝑐𝑆𝑆 
 

𝑌𝑌𝑐𝑐𝑆𝑆 =
𝑝𝑝𝑐𝑐𝑆𝑆

0.746 + 0.803 ln � 𝐸𝐸
(1 + 𝛽𝛽)𝑝𝑝𝑐𝑐𝑆𝑆

�
 (10) 

 
For arbitrary stress–strain curves the exact value of 𝑝𝑝𝑐𝑐𝑆𝑆 is calculated by numerical integration of (5), while approximate 
formulae of 𝑝𝑝𝑐𝑐𝑆𝑆 for linear, modified Ludwik and combined Ludwik-Voce stress–strain curves are given in the appendices of 
[15] and [17]. As an example, excellent approximation of 𝑝𝑝𝑐𝑐𝑆𝑆 (Eq. (5)) for the modified Ludwik hardening law is (after [15]) 
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𝑝𝑝𝑐𝑐𝑆𝑆  =
2
3𝑌𝑌 �1 +𝜙𝜙𝑛𝑛F(n) −

1
𝑛𝑛 − ln(1 + 𝛽𝛽)� (11) 

  
This expression is more accurate than the integral formula used in [24] for incompressible media since expression (11) 
considers the effect of the material (elastic) compressibility 𝛽𝛽. By using Eq. (11) for the value of 𝑝𝑝𝑐𝑐𝑆𝑆 in expression (10), the 
approximate value of 𝑌𝑌𝑐𝑐𝑆𝑆 is found to be slightly better than the one obtained from formula (8). 
 
4. The effect of the hole slenderness ratio 𝒉𝒉/𝑫𝑫 
       A comprehensive comparison with experimental data in [15] has demonstrated that the ratio between the ballistic limits 
of two targets, from the same metal but with thicknesses 𝑘𝑘ℎ and ℎ (𝑘𝑘 > 1), against the same threat, is higher than the 
commonly accepted value of √𝑘𝑘. While the ratio of √𝑘𝑘 is due to the plane-strain cylindrical cavitation pressure [4-11], by 
using the logarithmic formulation (3), the following expression has been found in [15] to be more accurate than √𝑘𝑘 
 

𝑉𝑉𝑏𝑏(𝑘𝑘ℎ)
𝑉𝑉𝑏𝑏(ℎ)

= √𝑘𝑘
�

1 +
ln (𝑘𝑘)

1 + ln � ℎ3𝐷𝐷
𝐸𝐸

√3𝑌𝑌𝑐𝑐𝑆𝑆
�

 
(12) 

 
This expression reflects the logarithmic effect of the hole slenderness ratio ℎ/𝐷𝐷, which is not included in ballistic perforation 
models that are based on the plane-strain cylindrical cavitation pressure [4-11], and in [15] it is shown that expression (12) 
agrees very well with the experimental data (see Table 1 in [15]). The logarithmic effect of the ℎ/𝐷𝐷 ratio is supported in [18] 
by a very large database of ballistic limit tests (more than 1600 experimental results for 24 different aluminium alloys 
perforated by 7.62 mm APM2 bullets) and is supported by comprehensives finite element simulations in [20] and in [25-26]. 
While the logarithmic formulation of 𝑠𝑠𝑐𝑐 in Fig. 4 leads to accurate predictions of 𝑉𝑉𝑏𝑏, the plane-strain cylindrical cavitation 
pressure is clearly not a good enough model for 𝑠𝑠𝑐𝑐. 

Fig. 4: Comparison of numerical ballistic limit data 𝑉𝑉𝑏𝑏(𝑁𝑁1) for Hardox 400 targets (circle markers) and 𝑉𝑉𝑏𝑏(𝑁𝑁2) for AA6070-O plates 
(square markers) with ballistic limit predictions due to the logarithmic (L) (Eq. (3)), integral (I), and plane-strain (PS) (Eq. (9)) variants 
for 𝑠𝑠𝑐𝑐  (Both figures are taken from [20]). The integral formulation of 𝑠𝑠𝑐𝑐  has not discussed in the present paper (for details on this 
formulation refer to [15-17]). 
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5. Conclusion 
      The specific cavitation energy is an essential parameter needed for analytical predictions of ballistic limit velocities in 
ductile perforation process (ductile targets that are impacted by near-rigid, nose-pointed projectiles). The plane-strain 
cylindrical cavitation pressure is clearly not a good enough model for the specific cavitation energy, and it is limited only to 
ductile perforations under plane-strain conditions (ℎ/𝐷𝐷 ≈ 3). 
      The logarithmic formulation of the specific cavitation energy (Eq. (3)) is found to be accurate enough for ballistic limit 
predictions of many target/threat combinations and over a wide range of ℎ/𝐷𝐷 ratios. This logarithmic formulation depends 
on the concepts of (spherical cavitation) effective yield stress 𝑌𝑌𝑐𝑐𝑆𝑆 and hole slenderness ratio ℎ/𝐷𝐷. The effective yield stress 
𝑌𝑌𝑐𝑐𝑆𝑆 lumps the actual stress-strain response of an arbitrary metal into a single, useful effective yield stress for ballistic limit 
predictions. The hole slenderness ratio ℎ/𝐷𝐷 has a logarithmic effect on the specific cavitation energy. Hence, the ratio 
between the ballistic limits of two targets, from the same metal but with thicknesses 𝑘𝑘ℎ and ℎ against the same threat, is 
higher than the commonly accepted value of √𝑘𝑘, and a more accurate ratio is given in expression (12).  
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