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Abstract – Worm gear units are helical gear units with an axis cross angle of 90°. The load distribution on several tooth flanks enables 
the transmission of high torques. The worm shaft is made of case-hardened steel and the worm wheel of a bronze alloy to avoid scuffing 
in the tooth contact due to high temperatures in the contact area. Since the wheel is made of a softer material, the gear units usually fail 
due to damage of the wheel. Common causes of damage are wear, pitting or fracture of a wheel tooth or the entire rim. According to the 
state of the art, the worm shaft is mostly designed against deflection. In the further literature, cases of tooth breakage of worm shafts are 
also documented. By modifying the gear geometry or using higher strength materials for the worm wheel, the worm shafts may fail due 
to force or fatigue fracture under high loads. The accuracy of the gear assembly also has a significant impact on the load distribution of 
gear units. Deviations in the nominal positions of the components may cause load increases and accelerate the failure of the gear unit. To 
estimate the influence of the assembly deviations on the bending stress in the worm shaft, this paper presents an analytical calculation 
approach for determining the bending stress by considering the notch effect, the notch position and the load pattern and distribution. 
Finally, the bending stresses caused by various load patterns caused by assembly deviations are calculated and the effect is evaluated. 
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1. Introduction 

Worm gear units are helical gear units with an axis cross angle of 90°, high transmission ratios in one gear stage as well 
as high transmittable torques due to the distribution of the load over several meshing teeth. The worm shaft is made of case-
hardened steel and a worm wheel which is usually made of a bronze alloy to avoid scuffing in the tooth contact. The loads 
applied during operation reduce the service life of the gearbox due to failures of the gear components. The premature failure 
of the gearbox usually occurs due to damage of the worm wheel such as wear, pitting or fracture of a wheel tooth or the 
entire rim. Additionally, high temperatures of the lubricant may cause an insufficiently formed lubricant film and may reduce 
the service life even further. 

In the state of the art, the verification of the service life of the worm gear unit is performed mainly for the worm wheel 
during design according to DIN 3996 [1], ISO/TR 14521 [2], ANSI/AGMA 6022-C93 [3] and BS 721:Part2 [4]. The worm 
shaft is designed against deflection because excessive displacements may shift the contact pattern, cause load transmission 
errors, and reduce the service life DIN 3996 [1], [5]. The stiffening effect of the worm shaft geometry was further investi-
gated by [6], an extension by the variable position of the force application is presented in [7]. According to 
ANSI/AGMA 6022-C93 [3], the worm shaft is additionally designed against fracture of the worm shaft by comparing the 
nominal bending stress with the tolerable stress of the material used. In [8], the fracture of the worm shaft is also estimated 
as a necessary component of future design approaches. 

Fractures of the worm shaft teeth are documented in [9], [10], [11], [12] and [13] but the design against stress in the 
tooth root of the worm shaft is not considered within any standardized approach. To calculate the stress in the tooth root, an 
approach based on the disk theory was presented by [14]. In [15], measurements using optical interferometers were performed 
from which empirical equations are derived. In [16] an approach based on the Finite Element Method (FEM) is presented 
and in [17] and [18] the stresses in the worm shaft are evaluated for a specific geometry using the FEM. The damage of the 
worm tooth flanks caused by grooves were investigated in [19] and [20]. For the calculation of the bending stress of worm 
shafts no further literature can be found. 
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2. Bending Stress according to the State of the Art and Load Distribution in Worm Gears 
According to ANSI/AGMA 6022-C93 [3], worm shafts are designed against fracture by comparing the nominal 

bending stress with the tolerable stresses of the used materials. The worm geometry is assumed as a round beam with 
the diameter corresponding to the root circle diameter df1 of the worm shaft. The tooth forces are applied in axial, radial 
and tangential direction (Fxm1, Frm1 and Ftm1) acting in a single point at the centre circle diameter dm1. The calculation 
model according to ANSI/AGMA 6022-C93 [3] and [21] is shown in Fig. 1. 

 

 

 

 
Fig. 1 Model for calculating the bending stress according to 

ANSI/AGMA 6022-C93 [3] and [21] 
 Fig. 2 Example load distribution calculated with 

SNETRA [22] 
 
The reaction forces of the bearings of the worm shaft are calculated. The bending moment M is determined by 

cutting reactions in the beam. For this purpose, the first cut in the beam is located between the bearing on the left and 
the tooth forces, and the second cut is located between the tooth force and the bearing on the right as shown in Fig. 1. 
For verifying the strength, the maximum bending moment of the bending moments Mb,1 and Mb,2 in these segments is 
used. The nominal bending stress according to ANSI/AGMA 6022-C93 [3] is calculated according to Eq. (1). 

 

σ =
𝑚𝑚𝑚𝑚𝑚𝑚�𝑀𝑀𝑏𝑏,1,𝑀𝑀𝑏𝑏,2�

𝜋𝜋
32 ∙ 𝑑𝑑𝑓𝑓1

3  (1) 

 
When designing worm gear units beyond the usual standard documents, the load distribution in the tooth contact is 

calculated to further optimize the design regarding wear, pitting, local temperatures and the lubrication film. Various 
software solutions (e.g. SNETRA [22] or ZSB [23]) are available for this purpose. Fig. 2 shows an example of the load 
distribution calculated with SNETRA for the deviation-free standard reference geometry according to DIN 3996 [1] and 
DIN 3975-1 [24] for the rotational speed of the worm shaft n1 = 60 rpm and the torque T2 = 1.350 Nm acting on the 
worm wheel. According to ISO/TR 10828 [25], the contact pattern for non-loaded engagement can be calculated. 

 
3. New Analytical Model for Calculating the Bending Stress 

The tooth space of worm shafts can be considered as a helical circumferential notch. In mechanical engineering, the 
maximum local stress occurring in a notched component under load is usually calculated based on a nominal stress 
approach. In most cases, the geometry and load need to be simplified for an analytical approach because of the com-
plexity of the components. The maximum local stress σ0 in the notch is then obtained by multiplying the nominal stress 
σnenn by factor αK for considering the stress concentration in the notch. The calculation for a circular notched beam of 
diameter d and bending resistance Wb loaded with a bending moment Mb is performed according to Eq. (2). 

 

𝜎𝜎0 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝛼𝛼𝐾𝐾 =
𝑀𝑀𝑏𝑏

𝑊𝑊𝑏𝑏
∙ 𝛼𝛼𝐾𝐾 (2) 

 
The bending stress distribution of an unnotched circumferential beam and in a double-threaded worm shaft are 

shown in Fig. 3. The location of the maximum bending stress in the cross section is located on the surface in the centre 
of the tooth gap at the root circle diameter df1. The bending stress in the cross-section of the worm shaft is rotated in 
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2a) - 2d) by the rotation angle φ1. The maximum tensile and compressive bending stresses occur when the direction of the 
bending moment and the location of the tooth gap align in 2c). 

 
Fig. 3 Bending stress distribution in the cross section of a reference rod (1) and for rotated worm gear shaft cross sections (2a - d) 

 
The dimensionless notch coefficient αK depends on the geometry of the notch and the type of loading, whereby a dis-

tinction is made between tension/compression, bending and torsion. The determination is usually carried out using FEM 
simulations or analytical approaches (e.g. according to [26]). The notch coefficients of various simple notched shafts can be 
found in DIN 743-2 [27]. However, helical notches are not treated in the document. The notch effect for the standard worm 
shaft geometry according to DIN 3996 [1] loaded with a constant bending moment Mb is investigated using FEM simula- 
tions. The calculation of the notch coefficient αK is 
carried out by comparing the maximum stress σb,max,WS 
in the tooth gap of the worm shaft to the maximum 
nominal stress σb,max,nenn of an unnotched round profile 
loaded with the same bending moment. The notch co-
efficient is αK = σb,max,WS / σb,max,nenn = 2,02. By rotat-
ing the cross-section by the angle φ1, the occurring 
stress changes depending on the absolute position of 
the tooth root in relation to the orientation of the bend-
ing moment Mb. The periodic bending stresses in the 
two tooth gaps in the cross section and in the un-
notched beam are shown in Fig. 4. The graph of the 
bending stress is independent of the toothing geometry 
and mathematically described using the sine function. 

  

 
Fig. 4 Stress curve during rotation of the cross section and notch effect 

 
3.1. Bending Stress in Axial Direction and due to Worm Shaft Rotation 

According to the calculation approach in ANSI/AMGA 6022-C93 [3], the worm shaft is loaded by the tooth force com-
ponents acting in a single point at the centre circle diameter in the middle of the shaft. This results in the bending moments 
Mxz and Myz in the respective planes. By considering the changing position of the tooth gap in the cross section along the 
worm axis due to the helical tooth geometry and the rotation of the worm shaft during operation, the model as shown in 
Fig. 5 is derived. The coefficient Kp considers the axial and angular position of the observation point and is calculated ac-
cording to Eq. (3). 

 

𝐾𝐾𝑃𝑃 = cos �𝜐𝜐𝑧𝑧𝑓𝑓,0 +
𝑧𝑧

𝑚𝑚𝑥𝑥 ∙ 𝑧𝑧1 ∙ 𝜋𝜋
∙ 2𝜋𝜋 + 𝜑𝜑1 + 𝜐𝜐𝑀𝑀𝑏𝑏(𝜑𝜑1, 𝑧𝑧) + 𝜑𝜑𝑛𝑛� (3) 

 
In Eq. (3), the initial angle position of the tooth gap in the reference position is υzf,0, the gears axial modulus mx, the 

angle direction of the bending moment in the cross section at the coordinate z is υMb and the phase shift of all n tooth gaps in 
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worm shafts with more than one gear threat is φn. Depending on the amount of worm threads z1, every cross section 
features n = z1 notches. The phase shift for every notch in one cross section is calculated according to Eq. (4). 

 

𝜑𝜑𝑛𝑛 =
𝑛𝑛 − 1
𝑧𝑧1

∙ 2𝜋𝜋 (4) 

 
The axis location and rotation angle dependent bending stress for observation points with different z coordinates 

under rotation with the angle φ1 is shown in Fig. 6. 
 

 

 

 
Fig. 5 Bending moment in xz- and yz-plane under point load  Fig. 6 Bending stress in the worm gear shaft depending on 

the axial position z and the rotation angle φ1 

The tensile and compressive bending stresses in the tooth gap as a function of the rotation angle φ1 are shown in 
Fig. 7 for different thread numbers whereas the position with the maximum tensile stress is displayed in 1a) – d). 

 

 
Fig. 7 Angle-dependent bending stress during rotation of the cross section for 1a) z1 = 1, 1b) z1 = 2, 1c) z1 = 3 and 1d) z1 = 4 

 
3.2. Consideration of the Load Distribution in the Tooth Contact 

The load distribution in the tooth contact is considered when designing worm gear units beyond the current national 
or international standards. The calculated load distribution F along a contact line j can be converted into point loads 
Fi = (Fx,i Fy,i Fz,i)T at the contact points Pi = (xi yi zi)T. The force components Fx,eji, Fy,eji and Fz,eji are determined by mul-
tiplying the total point load Feji by the components nx,i, ny,i and nz,i of the normal vector ni on the worm flank at the 
contact point Peji. To consider the load distribution when calculating the bending stress, the resulting bending moment 
Mres,e in each engagement position is calculated by summarizing the bending moments Meji resulting from each force 
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component in each contact point. For this purpose, the approach extended by the variable force application point in [7] based 
on ANSI/AGMA 6022-C93 [3] is used. The resulting bending moment Mres,e is calculated according to Eq. (5). 

 

𝑀𝑀𝑟𝑟𝑛𝑛𝑟𝑟,𝑛𝑛(𝜑𝜑1, 𝑧𝑧) = ���𝑀𝑀𝑥𝑥𝑧𝑧,𝑗𝑗𝑗𝑗(𝑧𝑧)2 + 𝑀𝑀𝑦𝑦𝑧𝑧,𝑗𝑗𝑗𝑗(𝑧𝑧)2
𝑛𝑛𝑒𝑒𝑒𝑒

𝑗𝑗=1

𝑚𝑚

𝑗𝑗=1

 (5) 

 
The contact lines j of an engagement position e with the load distribution Feji at the contact points Peji are shown as an 

example in Fig. 8. 

 
Fig.8 Engagement position e = 1 and simultaneous load distribution on four tooth flanks for a deviation free worm gear as calculated 

with SNETRA [22] 
 
The contact lines of all other engagement positions of the gears are displayed in black colour. The engagement angle 

υMb of the total bending moment Mres,e is calculated for every axial position z using Eq. (6). 
 

𝜐𝜐𝑀𝑀𝑏𝑏(𝜑𝜑1, 𝑧𝑧) = arctan�
∑𝑀𝑀𝑦𝑦𝑧𝑧,𝑗𝑗𝑗𝑗 (𝜑𝜑1, 𝑧𝑧)
∑𝑀𝑀𝑥𝑥𝑧𝑧,𝑗𝑗𝑗𝑗(𝜑𝜑1, 𝑧𝑧)

� (6) 

 
The resulting bending moments for four in the contact pattern equally distributed engagement positions are shown in 

Fig. 9. The contact lines used for the calculation are shown in Fig. 10. 
 

 

 

 

Fig. 9 Bending moment in four engagement positions  Fig. 10 Load distribution in four engagement positions 
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3.3. Total Bending Stress in Worm Shafts 
The model for considering all previously discussed effects when calculating the bending stress in worm shafts is 

shown for one cross section at the axial location z in Fig. 11.  

 
Fig. 11  Model for calculating the bending stress in the entire worm shaft 

 
The bending stress in every engagement position e is calculated using Eq. (2) through (6) according to Eq. (7). 
 

𝜎𝜎𝑏𝑏,0 =
�𝑀𝑀𝑥𝑥𝑧𝑧,𝑗𝑗𝑗𝑗(𝜑𝜑1, 𝑧𝑧)2 + 𝑀𝑀𝑦𝑦𝑧𝑧,𝑗𝑗𝑗𝑗(𝜑𝜑1, 𝑧𝑧)2

𝜋𝜋 ∙ 𝑑𝑑𝑓𝑓1
2

32

∙ cos �𝜐𝜐𝑧𝑧𝑓𝑓,0 +
𝑧𝑧

𝑧𝑧1 ∙ 𝑚𝑚𝑥𝑥 ∙ 𝜋𝜋
∙ 2𝜋𝜋 + 𝜐𝜐𝑀𝑀𝑏𝑏(𝜑𝜑1, 𝑧𝑧) + 𝜑𝜑1 + 𝜑𝜑𝑛𝑛� ∙ 𝛼𝛼𝐾𝐾 (7) 

 
4. Bending Stress Overload due to Assembly Deviations 

Worm gear units are subject to various possible deviations both during manufacture and assembly. For economical 
production, the permitted deviations must be defined in such a way that the operation of the gear unit is ensured and no 
premature failures or other disruptive effects occur. The presented approach is used to analyse the influence of the 
assembly deviations defined in [22] (axial displacement Δa, width displacement Δb, crossing angle error ΔΣ and slope 
angle error Δβ) for the standard reference gearing according to DIN 3996 [1] and DIN 3975-1 [24]. The load distribu-
tions calculated by SNETRA [22] for n1 = 60 rpm and T2 = 1.350 Nm are shown in Fig. 12 a) to i) for different assembly 
deviations. The maximum stress values calculated for the entire contact area are projected in the cross section and dis-
played in a polar plot. The tensile stresses are displayed in red, the compressive stresses in blue. 
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Fig. 12 Load distributions calculated with SNETRA [22] and bending stresses (tensile = red, compressive = blue) for assembly deviations: 

12a) negative crossing angle error, 12b) positive axial displacement, 12c) positive crossing angle error, 12d) negative width dis-
placement, 12e) deviation-free, 12f) positive width displacement, 12g) negative slope angle error, 12h) negative axial displace-
ment and 12i) positive slope angle error.  

 
The maximum bending stress according to the approach in ANSI/AGMA 6022-C93 [3] is 261,6 MPa. In comparison, 

the bending stress for the deviation-free assembly increases by 35 %. The displacement of the contact pattern due to assembly 
deviations, on the other hand, only slightly increases the material stress but rotates the location of the maximum tensile and 
compressive stresses. The largest increase of the bending stress occurs due to the positive axial displacement Δa = +0,1 mm 
by 6% in Fig. 12 b) and the smallest increase due to the negative cross angle error ΔΣ = -0,2° by 1% in Fig. 12 a). 

 
5. Conclusion 

The presented calculation approach allows the calculation of the bending stresses by considering the notch effect in the 
tooth gap, the location of the stress maxima and the load distribution. The influence of assembly deviations on the material 
stress in the worm shaft can be evaluated when designing worm gears, which increases the load capacity of the gearbox by 
using the remaining resources in the material of the worm shaft. The computational efficiency of the gear may be improved 
by downsizing the diameters of the worm shafts before reaching the strength limit. Furthermore, the reduction of the worms 
tooth thickness can increase the wear safety factor of the worm wheel by increasing the wheels tooth thickness without 
sacrificing the durability of the worm shaft. To enable the calculation of a wide variety of worm shaft geometries, it is 
necessary to determine the notch effect depending on geometric parameters of the toothing. This may be the subject of further 
investigations. Worm shafts experience different loads during operation in worm gear units. In addition to the occurring 
bending stress, the tooth root rounding experiences a combination of bending, compressive and shear stress due to the load 
transmission in the tooth contact similar to a helical gear. Though, no standardized calculation method is available. The 
superposition of the bending stress in the cross section and the load in the tooth root form the total stress experienced by 
worm gear shafts. To perform a material strength check, both load aspects need to be considered. The bearable load of the 
material needs to be evaluated by performing experimental investigations. 
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