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Abstract - In this paper, the thermal entrance length for the laminar forced convection in circular microtubes is investigated. The flow 

is considered steady incompressible and hydrodynamically developed, and the fluid Newtonian with constant thermophysical properties. 

The effects of viscous dissipation, axial conduction and slip flow are taken into account. The first-order slip-velocity and temperature 

jump models are used for the wall boundary conditions. An exact analytical solution is used to calculate for the velocity and temperature 

distributions. Furthermore, the Nusselt number is determined in terms of the Brinkman number, the Péclet number and the Knudsen 

number. The effects of the Brinkman number, Péclet number, and the Knudsen number on the thermal entrance length are presented. It 

is found that the thermal entrance length is approximately compared to the radius for small Péclet numbers while it is continuously 

increasing for large values of the Péclet number. Otherwise, the thermal entrance length decreases as the absolute value of the Brinkman 

number increases. 
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1. Introduction 
Heat transfer in the microscale is very important for the development of many industrial products such as micro heat-

exchangers that are used in various applications. The forced convection, also known as the Graetz problem, is one of the 

fundamental topics in the study of heat transfer. Graetz was the first to study this problem in 1882 [1]. Shah and London 

(1978) [1] reviewed different analytical and numerical solutions to this problem using various configurations in the 

macroscale. Lahjomri and Oubarra (1999) [2] studied the extended Graetz problem, which includes the axial heat conduction 

effects, in parallel-plate channels and circular tubes. They solved the problem using an exact analytical solution. Recently, 

Haddout et al. (2020) [3] presented an analytical study of the extended Graetz problem in parallel-plate microchannels and 

circular microtubes in the case of a fixed characteristic mean velocity. Shaimi et al. (2023) [4] presented a comparative study 

for the extended Graetz problem in parallel-plate microchannels and circular microtubes between the case of a fixed 

characteristic pressure drop, which is of significant importance in optimization problems [5,6], and the fixed characteristic 

mean velocity, which is exhaustively studied in the literature [3]. A direct exact solution in the case of a fixed characteristic 

pressure drop was presented along with the relationship, between the pressure drop and the mean velocity, to be used in order 

to obtain the solution in the case of a fixed characteristic mean velocity. 

The objective of this paper is to investigate the effects of the axial heat conduction, viscous dissipation, and slip flow on 

the thermal entrance length of a laminar forced convection in microtubes. The microtube is considered infinite with constant 

wall temperature including a step change in its value at a given abscissa. The flow is assumed to be steady incompressible 

and hydrodynamically developed, and the fluid is considered Newtonian with constant thermophysical properties. The wall 

boundary conditions are given by the first-order slip-velocity and temperature jump models. The effects of the Péclet number, 

Brinkman number, and Knudsen number on the thermal entrance length are presented. 

This paper is divided into five sections. The analysis is presented in the second section. Then, the thermal entrance length 

calculation is demonstrated in the third section. After that, the results and discussions are shown in the fourth section. Finally, 

a conclusion is presented to summarize the current investigation. 
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2. Analysis 
The circular microtube is axisymmetric as shown in Fig. 1. 𝑅 is the radius of the microtube and (𝑟∗, 𝑧∗) are cylindrical 

coordinates. The wall temperature is defined by a step function where it is given by the constant, 𝑇0, for 𝑧∗ < 0 and the 

constant, 𝑇𝑤, for 𝑧∗ > 0. At 𝑧∗ = ±∞, the temperature profiles are considered developed. 

 

 
Fig. 1: The geometrical configuration of the studied microtube. 

 

The Newtonian fluid flow is assumed to be steady, laminar, incompressible, and hydrodynamically developed. The 

first-order slip-velocity and temperature jump models are used for wall boundary conditions. Under these assumptions, 

the governing equations are given by [4]: 

 
1

𝑟∗

𝑑

𝑑𝑟∗
(𝑟∗

𝑑𝑢∗

𝑑𝑟∗
) =

1

𝜇

𝑑𝑝∗

𝑑𝑧∗
 (1) 

𝜌𝐶𝑝𝑢∗(𝑟∗)
𝜕𝑇𝑗

∗

𝜕𝑧∗
= 𝑘 (

𝜕2𝑇𝑗
∗

𝜕𝑧∗2 +
1

𝑟∗

𝜕

𝜕𝑟∗ (𝑟∗
𝜕𝑇𝑗

∗

𝜕𝑟∗ )) + 𝜇 (
𝑑𝑢∗

𝑑𝑟∗
)

2

 (2) 

 

where 𝜌, 𝜇, 𝐶𝑝, 𝑘, 𝑝∗, and 𝑢∗ are respectively the density, dynamic viscosity, specific heat, thermal conductivity, pressure, 

and axial velocity of the fluid. 𝑇𝑗
∗ is the temperature distribution of the fluid with 𝑗 = 1 for the upstream region (𝑧∗ < 0) and 

𝑗 = 2 for the downstream region (𝑧∗ > 0). 

The boundary conditions are written as follows [4]: 

 
𝑑𝑢∗

𝑑𝑟∗|
𝑟∗=0

= 0;   
𝜕𝑇1

∗

𝜕𝑟∗ |
𝑟∗=0

= 0;   
𝜕𝑇2

∗

𝜕𝑟∗ |
𝑟∗=0

= 0 (3) 

𝑢∗(𝑟∗ = 𝑅) = −
2 − 𝜎v

𝜎v
𝜆

𝑑𝑢∗

𝑑𝑟∗|
𝑟∗=𝑅

 (4) 

𝑇1
∗(𝑧∗, 𝑟∗ = 𝑅) − 𝑇0 = −

2 − 𝜎𝑇

𝜎𝑇

2𝛾

𝛾 + 1

𝜆
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𝜕𝑇1
∗

𝜕𝑟∗ |
𝑟∗=𝑅

;    𝑇2
∗(𝑧∗, 𝑟∗ = 𝑅) − 𝑇𝑤 = −

2 − 𝜎𝑇

𝜎𝑇

2𝛾

𝛾 + 1

𝜆

𝑃𝑟

𝜕𝑇2
∗
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 (5) 

𝑇1
∗(𝑧∗ = 0, 𝑟∗) = 𝑇2

∗(𝑧∗ = 0, 𝑟∗) for 0 ≤ 𝑟∗ < 𝑅;   
𝜕𝑇1

∗

𝜕𝑧∗ |
𝑧∗=0

=
𝜕𝑇2

∗

𝜕𝑧∗|
𝑧∗=0

 (6) 

𝑇1
∗(𝑧∗ = −∞, 𝑟∗) = 𝑇−∞

∗ (𝑟∗);   𝑇2
∗(𝑧∗ = +∞, 𝑟∗) = 𝑇+∞

∗ (𝑟∗) (7) 

 

where 𝜆, 𝜎v, 𝜎𝑇, 𝛾, and 𝑃𝑟 =
𝜇𝐶𝑝

𝑘
 are respectively the mean free path of the molecules, tangential accommodation coefficient, 

energy accommodation coefficient, specific heat ratio, and Prandtl number. Equation (3) represents the axisymmetry 

conditions. Equations (4) and (5) are respectively the slip-velocity and the temperature jump at the stationary isothermal 

wall. Equation (6) shows the continuity of the temperature and the axial heat flux at the junction section (𝑧∗ = 0) which is 

the section of the step change in the wall temperature. Equation (7) represents the developed profiles of the temperature far 
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upstream at 𝑧∗ = −∞ (𝑇−∞
∗ (𝑟∗)) and far downstream at 𝑧∗ = +∞ (𝑇+∞

∗ (𝑟∗)) that are to be calculated by using Eqs. (2) and 

(5). 

The dimensionless variables are defined as follows [4] considering a fixed characteristic pressure drop: 

 

𝑧 =
𝑧∗

𝑅 ∙ 𝑃𝑒
;    𝑟 =

𝑟∗

𝑅
;    𝑢 =

𝑢∗

𝑅2

4𝜇
∆𝑝𝐿

;    𝑇𝑗 =
𝑇𝑗

∗ − 𝑇𝑤

𝑇0 − 𝑇𝑤
 (8) 

 

where 𝑃𝑒 =
𝜌𝐶𝑝𝑅3∆𝑝𝐿

4𝜇𝑘
 is the Péclet number and ∆𝑝𝐿 = −

𝑑𝑝∗

𝑑𝑧∗ = constant is the pressure drop per unit length [4]. 

Integrating Eq. (1) and using Eqs. (3), (4), and (8) leads to the following dimensionless velocity distribution [4]: 

 

𝑢(𝑟) = 1 − 𝑟2 + 4
2 − 𝜎v

𝜎v
𝐾𝑛 (9) 

 

where 𝐾𝑛 =
𝜆

2𝑅
 is the Knudsen number. 

Substituting Eq. (8) into Eq. (2) leads to the following dimensionless energy equation: 

 

𝑢(𝑟)
𝜕𝑇𝑗

𝜕𝑧
=

1

𝑃𝑒2

𝜕2𝑇𝑗

𝜕𝑧2
+

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇𝑗

𝜕𝑟
) + 𝐵𝑟 (

𝑑𝑢

𝑑𝑟
)

2

 (10) 

 

where 𝐵𝑟 =
𝑅4(∆𝑝𝐿)2

16𝜇𝑘(𝑇0−𝑇𝑤)
 is the Brinkman number. 

The dimensionless boundary conditions become [4]: 

 
𝜕𝑇1

𝜕𝑟
|

𝑟=0
= 0;   

𝜕𝑇2

𝜕𝑟
|

𝑟=0
= 0 (11) 

𝑇1(𝑧, 𝑟 = 1) = 1 − 2 𝜅 𝐾𝑛
𝜕𝑇1

𝜕𝑟
|

𝑟=1
;    𝑇2(𝑧, 𝑟 = 1) = −2 𝜅 𝐾𝑛

𝜕𝑇2

𝜕𝑟
|

𝑟=1
 (12) 

𝑇1(𝑧 = 0, 𝑟) = 𝑇2(𝑧 = 0, 𝑟) for 0 ≤ 𝑟 < 1;   
𝜕𝑇1

𝜕𝑧
|

𝑧=0
=

𝜕𝑇2

𝜕𝑧
|

𝑧=0
 (13) 

𝑇1(𝑧 = −∞, 𝑟) = 1 +
𝐵𝑟

4
(1 − 𝑟4 + 8 𝜅 𝐾𝑛);   𝑇2(𝑧 = +∞, 𝑟) =

𝐵𝑟

4
(1 − 𝑟4 + 8 𝜅 𝐾𝑛) (14) 

 

where 𝜅 =
2−𝜎𝑇

𝜎𝑇

2𝛾

𝛾+1

1

𝑃𝑟
 is a characteristic parameter accounting for the degree of temperature jump. Equation (14) shows the 

expressions of the developed dimensionless temperature profiles which are obtained by integrating Eq. (10) and using Eqs. 

(11) and (12). 

The dimensionless temperature distributions are sought in the following form [4]: 

 

𝑇1(𝑧, 𝑟) = 1 +
𝐵𝑟

4
(1 − 𝑟4 + 8 𝜅 𝐾𝑛) + ∑ 𝐴𝑛𝑓𝑛(𝑟)𝑒𝛼𝑛

2 𝑧

𝑛

 (15) 

𝑇2(𝑧, 𝑟) =
𝐵𝑟

4
(1 − 𝑟4 + 8 𝜅 𝐾𝑛) + ∑ 𝐵𝑛𝑔𝑛(𝑟)𝑒−𝛽𝑛

2𝑧

𝑛

 (16) 
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where 𝐴𝑛 and 𝐵𝑛 are expansion constants, 𝛼𝑛 and 𝛽𝑛 are real eigenvalues respectively associated with the eigenfunctions 𝑓𝑛 

and 𝑔𝑛 that are given [4]: 

 

𝑓𝑛(𝑟) = 𝑒−
𝑖𝛼𝑛𝑟2

2 𝑀(𝑎𝑛, 𝑐, 𝑖𝛼𝑛𝑟2) (17) 

𝑔𝑛(𝑟) = 𝑒−
𝛽𝑛𝑟2

2 𝑀(𝑏𝑛, 𝑐, 𝛽𝑛𝑟2) (18) 

 

where 𝑎𝑛 =
1

2
−

𝑖+8
2−𝜎𝑣

𝜎𝑣
𝐾𝑛

4
𝛼𝑛 +

𝑖𝛼𝑛
3

4𝑃𝑒2, 𝑏𝑛 =
1

2
−

1+8
2−𝜎𝑣

𝜎𝑣
𝐾𝑛

4
𝛽𝑛 −

𝛽𝑛
3

4𝑃𝑒2, 𝑐 = 1, and 𝑀 is the Kummer confluent first-kind 

hypergeometric function. 

The eigenvalues are calculated as roots of 𝑓𝑛(𝑟 = 1) + 2𝜅 𝐾𝑛
𝑑𝑓𝑛

𝑑𝑟
|

𝑟=1
= 0 and 𝑔𝑛(𝑟 = 1) + 2𝜅 𝐾𝑛

𝑑𝑔𝑛

𝑑𝑟
|

𝑟=1
= 0 

which are derived from Eq. (12). The expansion constants are determined by using Eq. (13) as follows [3]: 

 

𝐴𝑛 =
2

𝛼𝑛 [
𝑑𝑓𝑛(𝑟 = 1)

𝑑𝛼𝑛
+ 2𝜅 𝐾𝑛

𝑑
𝑑𝛼𝑛

(
𝑑𝑓𝑛
𝑑𝑟 |

𝑟=1
)]

 
(19) 

𝐵𝑛 = −
2

𝛽𝑛 [
𝑑𝑔𝑛(𝑟 = 1)

𝑑𝛽𝑛
+ 2𝜅 𝐾𝑛

𝑑
𝑑𝛽𝑛

(
𝑑𝑔𝑛
𝑑𝑟 |

𝑟=1
)]

 
(20) 

 

The local Nusselt number for 𝑧 > 0 is given by [4]: 

 

𝑁𝑢(𝑧) =

−2 
𝜕𝑇2
𝜕𝑟

|
𝑟=1

𝑇𝑏(𝑧)
 

(21) 

 

where 𝑇𝑏(𝑧) =
∫ 𝑢(𝑟) 𝑇2(𝑧,𝑟) 𝑟 𝑑𝑟

1

0

∫ 𝑢(𝑟) 𝑟 𝑑𝑟
1

0

 is the dimensionless bulk temperature. 

 

3. Thermal Entrance Length 
The step change in the wall temperature of the microtube leads to the existence of a thermal entrance region. The inlet 

of this thermal entrance region is the junction section where the temperature profile is obtained by solving the energy equation 

in the upstream region with the associated boundary conditions. The thermal entrance region ends as the fully developed 

flow is achieved which is characterized by a constant Nusselt number. Therefore, the thermal entrance length is defined as 

the length required to achieve, to a given degree of accuracy, the constant fully developed Nusselt number. There are different 

reported criteria in the literature [1] that are somewhat arbitrary on how to determine the thermal entrance length. In this 

paper, the thermal entrance length is defined as the length required to achieve a value of the local Nusselt number 𝑁𝑢 that 

satisfies 0.99 ∙ 𝑁𝑢𝐹𝐷 < 𝑁𝑢 < 1.01 ∙ 𝑁𝑢𝐹𝐷 where 𝑁𝑢𝐹𝐷 is the fully developed Nusselt number. 

In the case of a fixed characteristic pressure drop, presented in section 2, the dimensionless thermal entrance length is 

𝑧𝑡ℎ =
𝑧𝑡ℎ

∗

𝑅∙𝑃𝑒
 (Eq. (8)). The mean velocity in terms of the pressure drop is given by: 

 

𝑈𝑚 =
𝑅2∆𝑝𝐿

4𝜇
(

1

2
+ 4

2 − 𝜎v

𝜎v
𝐾𝑛) (22) 
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Otherwise, for the case of a fixed characteristic mean velocity 𝑈𝑚, the dimensionless variables are redefined in terms 

of 𝑈𝑚. Therefore, 𝑧, 𝑢, 𝑃𝑒, and 𝐵𝑟 are modified by using Eq. (22) as follows [4]: 

 

𝑍 =
𝑧

1 + 8
2 − 𝜎v

𝜎v
𝐾𝑛

;   𝑈 =
𝑢

1
2

+ 4
2 − 𝜎v

𝜎v
𝐾𝑛

;  𝑃𝑒𝑈 =  (1 + 8
2 − 𝜎v

𝜎v
𝐾𝑛) 𝑃𝑒;  𝐵𝑟𝑈 = (

1

2
+ 4

2 − 𝜎v

𝜎v
𝐾𝑛)

2

𝐵𝑟 (23) 

 

where 𝑍 =
𝑧∗

𝑅 𝑃𝑒𝑈
, 𝑈 =

𝑢∗

𝑈𝑚
, 𝑃𝑒𝑈 =

2𝜌𝐶𝑝𝑅𝑈𝑚

𝑘
, and 𝐵𝑟𝑈 =

𝜇𝑈𝑚
2

𝑘(𝑇0−𝑇𝑤)
 are respectively the newly defined dimensionless axial 

coordinate, dimensionless velocity, Péclet number, and Brinkman number in terms of 𝑈𝑚. Let us note that in the case of 

𝐾𝑛 = 0, 𝑍 = 𝑧 and 𝑃𝑒𝑈 = 𝑃𝑒 (Eq. (23)). Finally, the dimensionless thermal entrance length in the case of a fixed 

characteristic mean velocity is 𝑍𝑡ℎ =
𝑧𝑡ℎ

∗

𝑅∙𝑃𝑒𝑈
. 

The dimensionless thermal entrance lengths 𝑧𝑡ℎ and 𝑍𝑡ℎ are defined in terms of 𝑃𝑒 and 𝑃𝑒𝑈, which means that they 

are dependent on the flow through ∆𝑃𝐿 and 𝑈𝑚 as well as fluid properties. Therefore, to obtain a dimensionless form of the 

thermal entrance length, that is purely geometrical, then the Péclet number is removed as follows: 

 

𝐿𝑡ℎ =
𝑧𝑡ℎ

∗

𝑅
= 𝑧𝑡ℎ𝑃𝑒 = 𝑍𝑡ℎ𝑃𝑒𝑈 (24) 

 

4. Results and Discussions 
In this section, the effects of the Péclet number, Brinkman number, Knudsen number, and degree of temperature jump 

are presented. In the following, the pure diffuse reflection 𝜎v = 1 [7] is considered. Both the no-slip flow 𝐾𝑛 ≤ 10−3 and 

the slip flow 10−3 < 𝐾𝑛 ≤ 0.1 [7] are presented in what follows. 

Figures 2(a)-(b) show the evolution of the thermal entrance length (respectively 𝑍𝑡ℎ and 𝐿𝑡ℎ) as a function of the Péclet 

number (𝑃𝑒𝑈) with no viscous dissipation (𝐵𝑟𝑈 = 0 → 𝐵𝑟 = 0) and no-slip condition (𝐾𝑛 = 0 which means that 𝑍𝑡ℎ = 𝑧𝑡ℎ 

and 𝑃𝑒𝑈 = 𝑃𝑒). As can be seen from Fig. 2(a), 𝑍𝑡ℎ decreases significantly as 𝑃𝑒𝑈 increases for small Péclet numbers 
(𝑃𝑒𝑈 < 10) while it reaches approximately a constant value (𝑍𝑡ℎ~0.11) for large Péclet numbers. Moreover, Fig. 2(b) 

shows that 𝐿𝑡ℎ increases continuously as 𝑃𝑒𝑈 increases for large Péclet numbers. This can be argued from the dimensionless 

energy equation using 𝜉 =
𝑧∗

𝑅
 and expressed for 𝐵𝑟 = 0 as follows: 

 

𝑃𝑒 𝑢(𝑟)
𝜕𝑇𝑗

𝜕𝜉
=

𝜕2𝑇𝑗

𝜕𝜉2
+

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇𝑗

𝜕𝑟
) (25) 

 

As can be seen from Eq. (25), the convective term in the left-hand side becomes more important as the Péclet number 

increases which induces an increase in the thermal entrance length 𝐿𝑡ℎ. Thus, for large Péclet numbers the thermal entrance 

region can be large (depending on the length of the tube) while it is approximately compared to the radius (𝐿𝑡ℎ~1.4 ∙ 𝑅) for 

small Péclet numbers (𝑃𝑒𝑈 < 10). 
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Fig. 2: Evolution of the thermal entrance length as a function of the Péclet number with no viscous dissipation and no-slip condition. 

 

Figures 3(a)-(b) show the evolution of the thermal entrance length (respectively 𝑍𝑡ℎ and 𝐿𝑡ℎ) as a function of the 

Brinkman number (𝐵𝑟𝑈) for different Péclet numbers and no-slip condition (𝐾𝑛 = 0 which means that 𝑍𝑡ℎ = 𝑧𝑡ℎ and 

𝑃𝑒𝑈 = 𝑃𝑒). It is found that the thermal entrance length is approximately independent of the Brinkman number’s sign 

(𝐵𝑟𝑈 > 0 for fluid cooling, 𝑇𝑤 < 𝑇0, and 𝐵𝑟𝑈 < 0 for fluid heating, 𝑇𝑤 > 𝑇0). Furthermore, the thermal entrance length 

decreases as |𝐵𝑟𝑈| increases which is induced by the increase of the viscous dissipation effects. This is verified from the 

dimensionless energy equation (Eq. (10)) where the increase in the viscous dissipation term leads to a decrease in the 

convective term and consequently leads to a decrease of the thermal entrance length. Additionally, in the presence of 

the viscous dissipation (Fig. 3(b)), 𝐿𝑡ℎ increases as 𝑃𝑒𝑈 increases similarly to the observed effect in Fig. 2(b). 
 

      
Fig. 3: Evolution of the thermal entrance length as a function of the Brinkman number for different Péclet numbers with no-slip 

condition. 
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Figure 4(a) shows the evolution of 𝑧𝑡ℎ and 𝑍𝑡ℎ as a function of the Knudsen number for negligible axial heat conduction 
(𝑃𝑒𝑈 = ∞ → 𝑃𝑒 = ∞) and no viscous dissipation (𝐵𝑟𝑈 = 0 → 𝐵𝑟 = 0) in the cases of no temperature jump condition 
(𝜅 = 0) and the presence of temperature jump (𝜅 = 1.667) including both cases of a fixed pressure drop and a fixed mean 

velocity. It is observed that in the case of a fixed mean velocity, 𝑍𝑡ℎ~0.11 with slow decrease and slow increase as 𝐾𝑛 

increases respectively for no temperature jump, 𝜅 = 0, and for 𝜅 = 1.667. This is due to the fixed mean velocity which 

induces approximately an unchangeable convective term. In the other hand for a fixed pressure drop, 𝑧𝑡ℎ increases as 𝐾𝑛 

increases. The temperature jump increases both 𝑧𝑡ℎ and 𝑍𝑡ℎ. This is due to the increase of the mean velocity as 𝐾𝑛 increases 

for a fixed pressure drop (Eq. (22)) which leads to an increase in the convective term. 

Figure 4(b) shows the evolution of 𝐿𝑡ℎ as a function of 𝐾𝑛 for different Péclet numbers with no viscous dissipation and 

no temperature jump condition. It is verified that 𝐿𝑡ℎ increases with the increase of the Péclet number similarly to Figs. 2(b) 

and 3(b). For small Péclet numbers (𝑃𝑒𝑈 = 1; 5), 𝐿𝑡ℎ is approximately constant while there is a slow decrease as 𝐾𝑛 

increases for larger Péclet number (𝑃𝑒𝑈 = 10). 
 

      
Fig. 4: Evolution of the thermal entrance length as a function of the Knudsen number for different Péclet numbers and degrees of 

temperature jump with no viscous dissipation.  

 

5. Conclusion 
This paper presents an investigation on the effects of the axial heat conduction, viscous dissipation, and slip flow on 

the thermal entrance length of a laminar forced convection in circular microtubes. The flow is assumed to be steady 

incompressible and the fluid Newtonian with constant thermophysical properties. The wall boundary conditions are given 

by the first-order slip-velocity and temperature jump models. The problem is solved analytically by using an exact solution 

to obtain the velocity and temperature distributions. Furthermore, the Nusselt number is determined in terms of the Péclet 

number, the Brinkman number, the Knudsen number, and the degree of temperature jump. It is found that the thermal 

entrance length is approximately compared to the radius ~1.4𝑅 for small Péclet numbers while it is continuously increasing 

for large Péclet numbers. Therefore, the thermal entrance region could be too important to be neglected for large Péclet 

numbers. In the other hand, the thermal entrance length decreases as the absolute value of the Brinkman number increases. 
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