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Abstract – Vibration isolators like hydraulic engine mounts are employed in the automotive industry to mitigate the effect of vibration 
and noise produced in the vehicle by the engine. Several analyses on the transient response of the hydraulic engine mounts have been 
carried out in literature to improve the performance of the device. In this paper, efforts have been taken to study the oscillatory fluid flow 
behaviour of the working fluid inside these mounts. A simplified fluid mount model is considered, and its respective numerical and 
mathematical models are developed to study the effect of input parameters such as frequency and displacement on pressure loss across 
the inertia track. Comparison of the inertia track pressure loss obtained from both the models provides validation on the modelling 
approach. This approach can be further utilized to develop a correlation between, the input displacement, the inertia track geometry, the 
fluid density and viscosity and the pressure loss across the inertia track in hydraulic engine mounts and thereby enhancing the damping 
efficiency of these mounts. 
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1. Introduction 

A fully articulated main rotor system of a helicopter has three hinges per blade, pitch hinge, flapping hinge, and a lead-
lag hinge. The lead-lag hinge allows the blade to move forward and backward in the plane of the rotor disk. Ground resonance 
is a mechanical instability affecting helicopters on the ground. It occurs at certain rotor speeds, where the lead–lag motion 
of the rotor blades couples with the motion of the fuselage, creating a self-excited oscillation, which is very violent and 
generally can result in total destruction of the helicopter, if the pilot is not careful and well trained. To control the ground 
resonance, passive hydraulic dampers are used in between the consecutive rotor blades of the main and tail rotors, as shown 
in Figure 1. 

   
Fig. 1:  NH90 helicopter with hydraulic dampers in between the main rotor blades[1] 

 
The internal design, of the hydraulic dampers, is shown in Figure 1 [1]. The hydraulic dampers, used in helicopters, 

consist of: (1) two fluid chambers (shown in pink color) connected to one another via a carefully designed orifice or inertia 
track, (2) a carefully selected working fluid (shown in blue color), (3) two rubber tube-forms (shown in green color), (4) a 
shaft (shown in black color) that connects the two inner members (shown in dark blue color) of the tube-forms, and (5) an 
outer housing. The carefully selected fluid and designed orifice/inertia track is what makes this damper to work. The damper 
needs to provide an adequate amount of damping to control the helicopter ground resonance. The lead-lag motion of the 
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blades makes the working fluid of the hydraulic damper to move back and forth between the two fluid chambers, creating 
oscillatory fluid flow phenomenon. 

There is another passive technology, called hydraulic engine mounts (or fluid or fluidlastic mounts), shown in Figure 2, 
that also experience oscillatory fluid flow phenomenon. As seen in Figure 2, a passive fluid (or hydraulic) engine mount [2, 
3, 4] comprises of a fluid (shown in blue color) that is housed in two elastomeric cavities (or fluid chambers) that are joined 
by an inertia track. 

 
Fig. 2: Hydraulic (fluid) engine mount 

 
The pressure drop from one fluid chamber to the other can be shown as follows: 

∆𝑃𝑃 = 𝐼𝐼𝑓𝑓𝑄̇𝑄 + ∆𝑃𝑃𝐿𝐿 (1) 
where fluid inertia is equal to 𝐼𝐼𝑓𝑓 = 𝐶𝐶 𝜌𝜌𝐿𝐿𝑡𝑡

𝐴𝐴𝑡𝑡
 . In fluid inertia equation, 𝜌𝜌 is the working fluid density, 𝐿𝐿𝑡𝑡 is the actual length of 

the inertia track, 𝐶𝐶𝐿𝐿𝑡𝑡 is the effective length of the inertia track with the constant C being in the range of 1 to 4/3 [5], and 𝐴𝐴𝑡𝑡 
is the inertia track cross-sectional area. In Equation (1), 𝑄𝑄 is the flow rate through the inertia track. The 2nd term in the 
equation (1) includes the effects of viscous shear, expansion/contraction, and other forces such as body and gravitational 
forces. In this paper, we refer to the 2nd term of equation (1) as the flow losses. Accurate knowledge of the orifice/inertia 
track flow losses and the effective length of the inertia track are the most important design parameters, when designing a 
hydraulic damper or a fluid mount. For the hydraulic dampers, since the length of the inertia track is in general low thus low 
fluid inertia, the 2nd term in the equation (1), namely ∆𝑃𝑃𝐿𝐿, is the most important design parameter. For fluid mounts, accurate 
knowledge of both the effective inertia track length and the flow losses is very much needed. In order to accurately know the 
constant C and ∆𝑃𝑃𝐿𝐿, both CFD and experimental results are needed. Here in this paper, the CFD numerical results are only 
shown. 
 

Although real fluid mounts and hydraulic dampers can have very complicated geometries, the simplified geometry 
shown in Figure 3a can be used to characterize the critical device parameters. In the physical model of Figure 3a, the walls 
of the end chambers are assumed rigid. This allows an isolation of the fluid mechanics effects from the elastomer compliance 
effects, which can be analysed separately. Here in this paper, we focus on fluid mounts rather than hydraulic dampers since 
both the inertia track effective length as well as its flow losses will be important. 

 
As we apply a sinusoidal displacement across the chambers of Figure 3a, the fluid is forced to move through the narrow 

inertia track causing a pressure drop across the mount. To determine the efficiency and improve the performance of the 
mount, the prediction of this pressure drop is an important criterion. Therefore, the magnitude of the pressure drop, which is 
a function of inertia track geometry, fluid density and viscosity, and input displacement, is analysed by considering a Physical 
model which is simulated in MATLAB and ANSYS FLUENT.  
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2. Numerical Model of the Simplified Fluid Mount Model 
The numerical modelling and analysis of the oscillating fluid flow in the simplified fluid mount model is being carried 

out using CFD tool ANSYS Fluent. The preliminary objective of the approach is to model the oscillating fluid flow in a test 
section and to initially identify and measure the pressure drop across the inertia track and validate the data with the 
mathematical model developed.  

The problem is solved in a two-dimensional CFD grid. It is initially assumed that there is no heat transfer or heat loss 
across the walls of the simplified fluid mount model and there is no phase change accounted for during the simulation i.e., 
the liquid flow is single phase, and the fluid is incompressible. 

 
2.1. Computational Domain and Mesh Generation 

The simplified fluid mount model is defined with two fluid chambers and an inertia track between them, see Figure 3a. 
At the end of the two chambers, inlet 1 and inlet 2 are defined, along with the wall and interior surface body. The fluid is 
allowed to oscillate inside the domain with the applied frequency and displacement. Since the model is axisymmetric, the 
geometry is modelled across one side of the axis. In Fluent, the axis of symmetry is the x-axis. 

In the ANSYS Meshing module, a computational mesh or grid is created. Using common "sizing" methods, a CFD mesh 
or grid is built with an elemental size of 0.0005m of the surface body to improve performance quality. Figure 3b represents 
the geometry of the simplified fluid mount model developed in Fluent and the CFD grid's construction. The grid's good 
quality was demonstrated by the lack of elements with negative computational mesh areas, orthogonality in the range of 
0.87-1, and skewness in the range of 0-0.35. 

 

             
         Fig. 3: (a) Physical Model of the Simplified Fluid Mount Model (b) Domain of simulation with inlets and mesh 

 
2.2. Mathematical Description 

The oscillating flow inside the flow bench is hydrodynamically fully developed in the inertia track with diameter 𝑑𝑑𝑡𝑡. 
The equation is considered by omitting the component of twisting flow, neglecting external forces, the flow direction is 
assumed to be parallel to the x-axis therefore the velocity has x-direction component only, which also indicated that the 
velocity to be constant in the direction that is parallel to the centre line. The governing conservation equation for the mass 
and momentum for the incompressible fully developed flow is expressed as; 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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Where the x, r, u, p, 𝜌𝜌 and 𝜗𝜗 represents the axial and radial coordinates, axial velocity, pressure, density, and kinematic 

viscosity of the fluid respectively. At the inlet_1 and at inlet_2 the boundary condition is set with a piston motion amplitude 
as 0.508 mm and at a frequency of 25.84Hz. Therefore, the velocity input at inlet_1 and inlet_2 is expressed as. 

 
𝑉𝑉1 = 𝑉𝑉2 = 0.08 cos(162.357t) 
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Fig. 4: Bond Graph of the System 

A transient analysis of the oscillating fluid flow is simulated in the ANSYS Fluent, and the solver is pressure-based. The 
SST k-omega model is used to solve the problem numerically. In this turbulence model, the k-𝜀𝜀 model is used to solve near 
the wall and k-omega model is used in the free stream region, thereby combining the best features of both models. The model 
uses a blending function to smoothly transition between the two models based on the distance from the wall, thus allowing 
the model to accurately predict flows with wide range of turbulence levels and flow conditions. 
             
3. Mathematical Model of the Simplified Fluid Mount Model 

The physical model of the simplified fluid mount model was shown Figure 3a. This model is developed as a basis for 
further mathematical modelling and evaluation of design parameters. Since the concerned system is dealing with multiple 
energy domains, mechanical and fluid systems, bond graph modelling technique [6] is employed for developing the 
mathematical model of the simplified fluid mount model of Figure 3a. 

In the physical model, shown in Figure 3a, an input velocity is applied to the left and right chamber ends in the same 
direction. This causes the fluid to be displaced from chamber 1 to the inertia track and further to the chamber 2; respectively. 
The fluid flow from the chamber 1 to chamber 2 through the inertia track is due to the pressure difference that is caused by 
this moving chamber ends. As the fluid passes through the inertia track, the fluid undergoes flow losses, due to the friction, 
viscous shear, and surface roughness, and this is one of the major concerns of oscillating flow simulation.  

The bond graph model of the physical model of Figure 3a is shown in Figure 4. The mechanical domain and fluid domain 
of the simplified fluid mount model is incorporated while developing the bond graph model. 

 
   

 
 
 
 
 
 
 
 
 
In the above bond graph, the input velocity is considered as the source of flow which is represented by bond 1. The mass 

of the chamber ends can be neglected since we are actuating the ends in a displacement mode. The fluid energy domain is 
then introduced in the bond graph model when the chamber ends meet the fluid. A transformer is employed for the simplified 
fluid mount model between the bonds 2 and 3. The employed transformer relation is Q =𝐴𝐴𝑝𝑝𝑉𝑉𝑖𝑖𝑖𝑖, which connects the input 
velocity to the fluid's volumetric flow rate through the inertia track, which is equal to the chamber end’s surface area. Multiple 
power dissipation factors are encountered as the power flows in the fluid energy domain. Specifically, the fluid's volumetric 
stiffnesses of each chamber (𝑘𝑘𝑣𝑣), inertia track flow losses (𝑅𝑅𝑜𝑜), and inertia track fluid inertia (𝐼𝐼𝑓𝑓). The compliance represented 
by 𝐶𝐶 are for the compressibility of the working fluid. The flow losses and fluid inertia inside the inertia track is calculated 
from the Fluent model. From the bond graph model, the state space equations in terms of displacement and momentum 
variables are found as shown below, 

𝑞𝑞4̇ = 𝐴𝐴𝑝𝑝𝑉𝑉𝑖𝑖𝑖𝑖 −
𝑃𝑃6
𝐼𝐼6

  (5) 

𝑃̇𝑃6 = 𝑞𝑞4
𝐶𝐶4
− 𝑅𝑅7

𝑃𝑃6
𝐼𝐼6
− 𝑞𝑞9

𝐶𝐶9
 (6) 

𝑞̇𝑞9 = 𝑃𝑃6
𝐼𝐼6
− 𝐴𝐴𝑃𝑃𝑉𝑉𝑖𝑖𝑖𝑖 (7) 

  From these state space equations, the state space matrices of the system have been represented below, the output 
variables are chamber 1 pressure (𝑃𝑃1), and chamber 2 pressure (𝑃𝑃2). MATLAB simulation is carried out with the above 
represented state space matrices to plot the outputs with respect to time. 
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4. Results and Validations 
4.1. Numerical Simulation Results 

The pressure and velocity contour for the oscillating fluid flow inside the Fluent CFD model is represented in Figures 5 
and 6. We can observe that inertia track is said to have a higher value of velocity compared to the chambers. At the same 
time, considering the total pressure contour, since an input velocity is applied to both sides of the chamber ends which 
compresses and expands the chambers simultaneously, the total pressure in the chambers is said to have a higher value than 
the inertia track pressures, which can also be observed from Figure 5. This pressure drop across the chamber results in the 
motion of fluid through the inertia track. Figure 6 shows the fluid jetting outside of the inertia track, which impacts the inertia 
track effective. 
 

 

    

4.2. Grid Independent Study (Mesh Sensitivity Analysis) 
Refinement of mesh is conducted in both spatial and temporal domain. The sinusoidal pressure data is extracted at a 

point in one of the chambers and the data for the respective refined mesh is represented in the Figure 7. For mesh refinement 
and comparing the pressure data, we have taken the model parameters as 10 Hz, 0.508 mm, SST K-omega turbulence model, 
with surface roughness as zero. The working fluid has a density of 1765 𝐾𝐾𝐾𝐾/𝑚𝑚3 and 1.8 cst viscosity. From Figure 7, we 
can conclude that as we refine the mesh in both temporal and spatial domain, the error between each data reduces. Therefore, 
we can conclude that for the case of 10 Hz, the mesh size of 0.001 and time step size 0.001 can be used for further calculation, 
as very fine mesh size and time step size may also have large truncation error. 
 

Fig. 5: Pressure contour for flow simulation (fluid flow 
from right to left) 

Fig. 6: Velocity contour for flow simulation (fluid flow 
from right to left) 
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  4.3. Parametric Analysis on the Numerical Model 
To calculate the pressure drop across the chambers, two points P1 and P2 have been considered shown in Figure 8. The 

transient pressure data has been extracted at these two points in CFD post processing and the corresponding results of 
sinusoidal pressure has been plotted in Figure 9. The frequency and displacement for this analysis is taken as 25.84Hz and 
0.508mm; respectively. From Figure 9, we can observe that the results have converged as the cycles of pressure is repeating 
at the same amplitudes. However, we can also observe a shift towards positive y-axis, and this shift could be explained due 
to the pressure drop accounted by the flow losses. The Table 1 represents the comparison of the pressure data extracted at 
the points P1 and P2, by changing the numerical model, and surface roughness and by keeping the geometry, boundary 
conditions and the working fluid the same. From the Table, we can analyse that, the two CFD model SST K-omega and 
Laminar have a slightly different pressure amplitudes at the two chambers. Also, analysis, on 2D and 3D model has also 
been done. From comparison of pressure data for 2D versus 3D, we can infer that, the pressure data doesn’t have significant 
difference in its values thus no need to make 3D CFD runs. To see the effect of surface roughness of the chambers and the 
inertia track on the pressure data, a Fluent simulation was conducted.  We can conclude that, as the surface roughness 
increases the pressure amplitude in two chambers increases there by increasing the pressure drop inside the system. Analysis 
on the pressure drop with respect to input frequency and displacement has been carried out with another working fluid with 
the density of 935kg/𝑚𝑚3 and the viscosity of 10 cst.  
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and temporal refined mesh. 

Fig. 8: Location of two points P1 & P2 considered in two 
chambers. 

Fig. 9: Pressure data at the points P1 and P2 
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Table 1: Comparison of pressure data at different CFD model parameters 

2D VS 3D CFD Model 
Surface 

Roughness 
(m) 

Pressure 
amplitude 

left chamber, 
P1 (Pa) 

Pressure 
amplitude 

right 
chamber, P2 

(Pa) 

Reynolds 
number 

𝑅𝑅𝑅𝑅

=
𝜌𝜌𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑

𝜇𝜇
 

Strouhal 
Number 

𝑆𝑆𝑆𝑆 =
𝜔𝜔𝜔𝜔
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

 

2D SST k-omega 0 74400 74900 999 44 
3D SST k-omega 0 75900 75800 999 44 
2D Laminar 0 74300 74800 999 44 
2D SST k-omega 0.0005 74700 75300 999 44 

 
From Table 2, we can conclude that as the frequency increases, the pressure drop across the chambers also increases, 

which represents the square dependence of pressure drop with frequency. If we assume a linear relationship between the 
pressure drop, ∆𝑃𝑃, and the flow rate, 𝑄𝑄, and the rate of flow rate, 𝑄̇𝑄, as shown in equation (10): 
 

∆𝑃𝑃 = 𝐼𝐼𝑓𝑓𝑄̇𝑄 + 𝑅𝑅𝑜𝑜𝑄𝑄 
where 𝐼𝐼𝑓𝑓 , and 𝑅𝑅𝑜𝑜 represents inertia track fluid inertia, and the flow losses; respectively, then 𝐼𝐼𝑓𝑓 and 𝑅𝑅𝑜𝑜 can be estimated, 

as shown in Table 2. Similarly, to analyse the influence of displacement amplitude on chamber pressures, numerical 
simulations have been conducted by keeping all the model and geometry parameters the same as that of the above case, with 
displacement amplitudes changing from ±0.0381 mm to ±0.0762mm and to ±0.1524mm. The Figure 10 represents the 
comparison of pressure amplitude at different frequency for the three different displacements amplitudes. Figure 10 shows 
that the chamber pressures are related to square of the input displacement. 
 

Displacement 
Amplitude 

(mm) 

Frequency 
(Hz) 

Pressure 
drop 
(Pa) 

Fluid 
Inertia 

𝑰𝑰𝒇𝒇 = 𝑪𝑪
𝝆𝝆𝑳𝑳𝑡𝑡
𝑨𝑨𝑡𝑡

 

Approx 
Flow 
Loss, 
𝑹𝑹𝟎𝟎 

 
±0.0381 10 635.6 5927900 1.90E+08 
±0.0381 20 2416.1 5937100 2.30E+08 
±0.0381 30 5375.3 5950900 2.95E+08 
±0.0381 40 9529.8 5997000 3.45E+08 
±0.0381 50 14873.5 6020100 4.00E+08 
±0.0381 60 21503.9883 6043200 4.88E+08 
±0.0381 70 29364.9121 6052400 5.82E+08 
±0.0381 80 38310.4082 6089300 6.23E+08 
±0.0381 90 48977.3047 6135400 7.04E+08 
±0.0381 100 61107.4356 6158500 8.72E+08 

 
 

Since in fluid mounts, the location of the notch frequency [2, 3, 4] is directly related to the inertia track fluid inertia and 
fluid inertia is directly related to the effective length, it is vital to accurately know the effective length of the intertia track 
through CFD simulations and experimental data. As mentioned in literature, the effective length is equal to 1 to 1.33 times 
the geometric length [5]. The increase in the effective length could be due to the jetting effect of the fluid from the intertia 
track at high displacement amplitudes and frequencies. The velocity streamlines shown in Figures 11 and 12 for the case of 
±0.0381mm at frequencies of 10 and 100 Hz; respectively, validates the jetting effect theory. This shows the importance of 
flow visualization. 
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Table 2: Data at constant amplitude and varying frequency 
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  4.4. MATLAB Simulation Results 

The pressure data obtained from MATLAB simulation is represented in Figure 13. CFD flow visualization, plus the 
bond graph model is used to find a value for 𝐼𝐼𝑓𝑓 and 𝑅𝑅𝑜𝑜. The pressure drop for the cases of ±0.0381mm from 10Hz to 100Hz, 
of CFD model and Mathematical Model, are tabulated below for comparing the accuracy of the pressure data and the 
effectiveness of the bond graph model to estimate 𝐼𝐼𝑓𝑓and 𝑅𝑅𝑜𝑜. From the Table 3, we can infer that the pressure drop value 
obtained from CFD Model and Mathematical model is approximately equal with a maximum error of 3.3%. This increase in 
percentage error at higher frequencies could be due to the effective length not accurately approximated from the Fluent 
model. 

 

 
Conclusion 

Flow visualization from the CFD Model has clearly indicated the importance of it when determining the effective length 
of the inertia track used to calculate the fluid inertance, 𝐼𝐼𝑓𝑓. This provides insights on the importance of using CFD models to 
develop a relation between the input displacement amplitude and frequency with the effective length of the inertia track, as 
this length if not calculated correctly, can result in large errors in calculation of the flow losses. The exact values of fluid 
inertia and flow loss is very important for calculating the exact location and depth of the notch frequency for fluid mounts. 
Further validation of the CFD and Math models should be carried out using experimental results. 
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Frequency 
(Hz) 

Pressure drop 
(Pa)  
CFD Model 

Pressure drop 
(Pa) 
Mathematical Model 

Percentage 
error % 

10 635.546295 642.034 1.01 
20 2416.05396 2406.36 0.4 
30 5375.32178 5377.06 0.03 
40 9529.78955 9502.46 0.28 
50 14873.54052 14978.98 0.7 
60 21503.9883 21795 1.33 
70 29364.9121 29709.2 1.15 
80 38310.4082 39226.2 2.33 
90 48977.3047 50412.2 2.84 

100 61107.4356 63198.8 3.3 

0.1285 m 0.1335 m 

Fig. 11: Effective length of the inertia track for ±0.0381mm 
@10Hz 

Fig. 12: Effective length of the inertia track for ±0.0381mm 
@100Hz 

Fig. 13: Pressure data for Mathematical Model 

Table 3: Pressure drop comparison for CFD Model and Math Model 


