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Abstract - The radiative transfer equation (RTE) serves as a fundamental framework for modeling the propagation of electromagnetic
waves through a medium.  Traditionally, solving the RTE has been challenging and computationally intensive. In this work, a physics-
informed neural network (PINN) model is used to solve the 1D radiative transfer equation. The PINN approach integrates physical laws
into the neural network training process, offering a novel way to address the computational complexities of RTE solution.  The results
from PINN model  are  validated  against  results  from previous  studies.  Findings  for  various  extinction  coefficient  are  presented
demonstrating the efficacy and accuracy of the PINN approach. This work   contributes to the theoretical understanding of the RTE and
highlights the potential of PINNs to enhance and streamline numerical methods in this domain.
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1. Introduction
Radiative heat transfer in participating media, such as furnace gases, the atmosphere, and clouds, involves absorption,

emission, and scattering phenomena [1]. Thermal radiation interacting with a medium leads to energy absorption, reducing
transmitted energy,  while  scattering redirects radiation in  multiple directions,  causing out-scattering and in-scattering.
Scattering can be isotropic or anisotropic, influenced by factors like temperature, composition, and spectral properties. In
high-temperature environments like furnaces, combustion byproducts such as carbon dioxide and water vapor significantly
affect  radiation  absorption  and scattering,  with  their  properties  being  spectrally  dependent  and  temperature-sensitive.
Additionally, soot further complicates these radiation interactions.

Traditionally,  radiative  transfer  equation  (RTE)  solvers  adopt  either  physics-based  (stochastic)  or  deterministic
methods.  Methods  like  Monte-Carlo  [2]  excel  in  parallel  computing  but  face  challenges  with  numerically  handling
optically thick media and integrating with other physics, such as fluid mechanics. Consequently, we often turn to numerical
methods that account for the spectral properties of gas species and particulate matter, as well as their interactions within
combustion  chambers.  Methods  like  this  such  as  finite  volume [3]  and  finite  element  [4]  methods  incur  significant
computational costs, rendering the overall process slow, cumbersome, and expensive. In addition, mesh-based methods
(e.g discrete ordinate) are  very sensitive to the computational dimension and suffer from the curse of dimensionality, given
the high dimensionality of RTE. In order to address these challenges, there is a growing need for RTE models that require
fewer computational resources and less time.  

In recent computational trends, artificial neural networks (ANNs) are increasingly favoured over elaborate physical
models due to their minimal computational requirements [5].  One promising approach involves substituting exhaustive
RTE solutions with ANN prediction models in strongly scattering media. ANNs, however, often require large amounts of
data and can struggle with generalization, higher computational costs and less accurate predictions. Recent breakthroughs
like physics-informed neural networks (PINNs) show potential for problems governed by partial differential equations [6].
Unlike pure data-driven ANN, PINNs embed differential equations into the training process [7]. These mesh-free models
selects random discrete points in the computational region (or take data from simulations/experiments), making them less
sensitive to dimensionality issues especially in RTE problems [8].   
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In this work, the one-dimensional  radiative transfer equation (RTE) is  solved using a Physics-Informed Neural
Network (PINN) model. The physical principles of the RTE are integrated into the neural network framework, allowing for
efficient handling of the complexities of radiative transfer. The solutions obtained from the PINN model are validated
against  previous  studies,  and  results  are  presented  in  terms  of  radiation  intensity  and  flux  for  various  extinction
coefficients. This work not only enhances the theoretical understanding of the RTE but also suggests a fast and efficient
method for solving thermal radiative transfer problems in scattering media, demonstrating the significant  potential  of
PINNs in this domain.

                   (a)                                                                              (b)

Figure 1 Radiation intensity I  vs μ at (a) x=0 and (b) x=1 involving different Gaussian quadrature schemes.

2. Mathematical modelling
2.1. Radiation transport equation (RTE), scattering phase function and boundary conditions
Generalized steady radiation transfer equation (RTE) for a system with participating medium can be written as follows

[9].   

Ω ∙∇ I λ (r ,Ω )+ βλ I λ (r ,Ω )=κa , λ Ib , λ [T (r ) ]+ κ s , λ
4 π ∫4π

❑

I λ¿¿, Ω ') Φλ (Ω∙Ω' )d Ω
' (1)

Here,  I λ (r ,Ω ) is specific intensity of radiation at position  𝑟 in direction  Ω and wavelength  𝜆.  β λ is the extinction
coefficient at wavelength 𝜆 which accounts for both absorption and scattering. κa , λ and κ s , λ are absorption and scattering
coefficients,  respectively  at  wavelength  𝜆.  I b , λ [T (r ) ] is  source  term,  typically  representing  the  blackbody  radiation
intensity at temperature 𝑇(𝑟). Φλ (Ω∙Ω' ) is scattering phase function, which describes the angular distribution of scattered
radiation. In the left  side of Eq. (1),  first  term represents rate of change of specific radiation intensity due to spatial
variation. Second term of LHS represents the extinction term due to absorption and scattering. In the right-hand side of Eq.
(1), the first term represents the radiation emission by the medium which can be described by a blackbody at temperature
T(r).  The most important term for radiation in scattering medium is the last term at right hand side. This term represents
the scattering function that denotes radiation scattering from all directions. This term makes the equation [Eq. (1)] an
integro-differential equation. For monochromatic radiation in one-dimensional geometry involving non-absorbing medium,
the RTE can be expressed as follows:
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μ d I ( x ,μ )
dx

+βI ( x , μ )=
κ s
2 ∫−1

1

I ¿¿, μ ') Φ (μ ∙ μ ' )dμ'                                     (2)

        In this equation, I ( x ,μ ) is monochromatic specific intensity at position x in direction 𝜇. In this case, μ represents the
direction cosine (cos(θ)), representing the direction of radiation with respect to the x-axis. It ranges from −1 to 1. The

spatial axis, x ranges from 0 to 1.  Integral term in Eq. (2),  
κ s
2 ∫−1

1

I ¿¿, μ ')  Φ (μ ∙μ ' )dμ'   integrates the contributions of

radiative intensity from all directions 𝜇′ to the direction 𝜇, weighted by the phase function Φ(𝜇𝜇′).  In one-dimension, the
scattering phase function can be written as follows. 

 

Φ (μ ∙μ ' ) = 1
2π∫0

2 π

Φ (Ω∙Ω ' )d φ                                                                                       (3)

        Here, Φ(Ω⋅Ω′) is the full phase function depending on the solid angles Ω and Ω′. φis the azimuthal angle, integrating
over 2𝜋 to account for all possible scattering directions in the plane perpendicular to the initial direction. The scattering
phase function can be expanded in terms of Legendre Polynomials, 𝑃𝑚(𝜇) to provide an orthogonal basis for the function
defined on the interval  [−1,1].  The scattering phase function  Φ(cosΘ)  describes  the  angular  distribution of  scattered
radiation and can be expressed in terms of expansion coefficient (Am) and Legendre polynomials (𝑃𝑚) as 
 

Φ (Ω∙Ω' ) = Φ(cosΘ) = 1+∑
m=1

M

Am Pm (cosΘ )                                                               (4)

Figure 2 Schematic representation of the architecture of the physics informed neural network (PINN) used to solve
the RTE.

For this problem with one dimension,
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Φ (μ ∙μ ' ) =  1+∑
m=1

M

Am Pm ( μ )Pm ( μ ' ¿¿                                                                               (5)

The final form of RTE in terms of Legendre polynomial approximation can be written as follows, 

μ d I ( x ,μ )
dx

+βI ( x , μ )=
κ s
2 ∫−1

1

I ¿¿, μ ') (1+∑m=1

M

AmPm(cosΘ))dμ '                                        (6)

In order to solve Eq. (6), the following boundary conditions are applied. 
Incoming radiation intensity: I (1 , μ )=1 for μ ∈ (0,1]

Outgoing radiation intensity: I (0 , μ )=0 for μ ∈ [−1,0)

2.2. Quadrature rules
      Angular discretization is a key factor that dictates the numerical solution accuracy of radiative heat transfer problems.
The selection of a proper angular quadrature   is  often essential for an efficient  solution. In methods like PINN, the
computation  is  significantly  affected  by  angular  space  quadrature.  The  solid  angular  space  is  two  dimensional  and
described by the zenith angle  θ and azimuthal angle  φ.  For the one-dimensional case, the radiative intensity is only a
function of zenith angle θ due to axisymmetry. Five different methods are tested in this work.  Gauss–Legendre,  Gauss–
Labotto, Gauss-Chebyshev, Gauss-Hermite and Gauss-Kronrod are explored based on corresponding quadrature points and
weights for integrating over the interval [−1, 1]. These works are compared with an analytical solution scheme as presented
in Figure 1. For a quadrature size of 10, Gauss-Legendre method provided better results compared to other methods.
Gauss-Legendre quadrature rule takes the following form

∫
−1

1

f (μ )d μ≈∑
i=1

n

wi f (μi )(7)

      Here, n is the number of sample points used in the approximation; 𝑤𝑖 are the quadrature weights; μi are the roots of the
ith Legendre polynomial. 
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Figure 3 Comparison of radiation intensity on μ-x plane as obtained in an earlier work of finite element method results (Pontaza and
Reddy [10]; Left panel) and present work (Right panel)). Figure from left panel is reprinted with permission from Elsevier.

2.3. Training points
       As  is  customary in  supervised learning,  we  need to  generate  or  obtain data  to  train  the  network.  Generally,
experimental  or  simulation data can be used for  detailed PINN studies.  In this work,  low-discrepancy sequences are
considered  for  training  set  pertaining  to  the  simplicity  of  the  domain.   Interior  and  boundary  collocation  points  are
established with the 1D domain (0<x<1). These data will be the interior training points. These points are needed to be
strategically placed to capture the behavior of the system accurately. Each point represents a specific instance in space and
intensity.  
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Figure 4 Comparison of results of present work with an earlier work (Hu et al. [11]). (a) Distribution of radiation intensity with
μ at x = 0 and (b) distribution of radiation intensity with μ at x = 1. (c) Radiation heat flux vs x. Figures in the left panel are reprinted

with permission from Elsevier.

    
Different methods are explored to understand the effects on the radiation intensity in the 1D domain.  Each sampling

method offers a different approach to selecting points within the 1D domain. We focus on sequence sampling method, that
involves generating points in a deterministic, ordered sequence. These points are systematically distributed within the
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domain, ensuring a more uniform coverage. In this work, Sobol, Latin Hypercube Sampling (LHS), random and Halton
sequences are considered for tests and the results are not shown in this article for brevity. For the considered cases, all
methods other than random sampling showed promising results. For subsequent calculations, Sobol sequence is used. 

2.4. Physics informed neural networks (PINNs) 
        A deep feedforward neural network is used transforming inputs into outputs through multiple layers of neurons. Each
layer consists of affine-linear maps and scalar non-linear activation functions. The network has an input layer, an output
layer, and multiple hidden layers. In order to solve Eq. (2), the equation is approximated the DNN, which takes spatial (x)
and angular  (μ)  variables  as  inputs.  The outputs  the  approximated solution  Ip ,  where  p denotes  the  neural  network
parameters including the weights and biases of neural networks. Figure 2 illustrated the architecture of the PINN. The NN
contains two input layers for x and μ. After detailed testing of network hyperparameters, 6 hidden layers with 24 neurons
each are considered. The tanh activation function is used for all neurons in the hidden layers after comparing with other
available activation functions.
       The partial differential operator ∂/∂x is implemented by using automatic differentiation using PyTorch. The neural
network  parameters  p are  obtained by  optimizing the loss  function.  Loss  function includes  residual  of  the  RTE and
boundary conditions, that makes the neural network dependent on physical governing equations. 
For interior collocation points, the residual is defined as follows: 

R
∫ ¿→μ d I (x , μ )

dx
+βI ( x , μ)−

κs
2 ∫−1

1

I ¿ ¿¿, μ’) (1+∑m=1

M

AmPm(cosΘ))d μ'−f (8)
For the boundary conditions, the residuals are

Rbc 1→I (1 , μ )−1 and Rbc 2→I (0 , μ )−0                                                                              (9)

       The objective is to minimize these residuals simultaneously to determine the weights and biases. The network, RTE
residual, boundary residuals, and loss functions are evaluated followed by an optimization algorithm (Adam) to obtain
optimal network parameters.  The network is trained iteratively, adjusting the weights and biases to minimize the loss
function.

3. Benchmark and validation
         Results from this work are validated with earlier physics based numerical simulation works. Figure 3 shows the
comparison of radiation intensity on spatial-angular (μ− x) plane with an earlier work by Pontaza and Reddy [10]. They
have carried out 1D simulations for unit  thickness using least square (LS) finite element method (FEM). The spatial-
angular distributions of the radiation intensity for the current work involving a PINN and the earlier work involving FEM
are in excellent agreement. 
         Further validation has been carried out with the detailed work done by Hu et al., [11]. Exit distributions of radiative
intensity (I−) at x = 0 and (I+) at x = 1 are plotted in Figure 4 (a) and (b).  The results based on different methods angular
discretization are in good agreement with slight  discrepancy.  Note that,  LS denotes the least  square method used by
Pontaza and Reddy [10]. CSM denotes collocation spectral method. The results are also compared with analytical solution
presented by Cengel and Ozisik [12]. 

4. Results and discussions
       In the case of isotropic scattering, a linear space-dependent scattering coefficient, κ s=x, and unit extinction coefficient,
β=1,  are  considered.  The corresponding results  are presented earlier  with the benchmark results  for a unit  extinction
coefficient. In thermal radiation, the extinction coefficient represents the ability of a medium to absorb and scatter radiation
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as it passes through. It characterizes how much radiation is absorbed or scattered per unit distance traveled through the
material. In combustion, the extinction coefficient represents how radiation interacts with combustion products like gases,
soot, and particles. In transparent media like air or water, β tends to be relatively low, reflecting minimal interaction of
radiation with the medium. However, in semi-transparent materials such as smoke or steam, β can increase substantially
due to higher levels of absorption and scattering by suspended particles or molecules.

Figure 5 Effect of extinction coefficient, β on (a-c) radiation intensity contour on  x−μ plane [(a) β = 0.6, (b) β = 0.8 and (c) β
=1] and (d) radiation flux.

       The extinction coefficient contributes to this attenuation by determining the rate at which radiation is absorbed along
its path.  The effect of the extinction coefficient on radiation intensity with μ at x=0 and x=1 is plotted but not shown to
maintain brevity. At lower values of β, radiation intensity is highest as the absorption into the medium is minimal. On the
other hand, at larger β values, radiation intensity is minimum as the medium absorbs significant amount of radiation.
Common to all  cases, radiation intensity decreases exponentially with distance as it  passes through a medium due to
absorption and scattering processes. A clearer representation with the evolution of radiation intensity on the x-μ plane is
presented in Figure 5(a-c). A higher extinction coefficient indicates stronger absorption, resulting in a greater reduction in
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the intensity of radiation as it  penetrates deeper into the medium. This is  evident  from the lower values of radiation
intensity for larger β.

A high extinction coefficient means that the material strongly absorbs thermal radiation, resulting in lower radiation
intensity. The material may heat up as it absorbs thermal radiation, leading to a higher temperature gradient across its
thickness or volume. If the material cannot efficiently dissipate the absorbed heat, it may accumulate thermal energy,
leading to further heating. On the other hand, a low extinction coefficient implies weaker absorption of thermal radiation
by the material. Thermal radiation emitted by a hot object can more readily pass through the material. With less absorption
of thermal radiation, the temperature gradient across the material may be more uniform. This nature is clearly illustrated in
terms of radiation flux for various β in Figure 5(d).  In environments where thermal radiation plays a significant role,
materials with low extinction coefficients may contribute to improved thermal comfort. However, for applications like
furnace combustion, control and optimization of the extinction coefficient is necessary.

5. Conclusion
         This  study  focuses  on  radiative  heat  transfer  in  participating  media,  applicable  for  various  industrial  and
environmental applications, Solution of radiation transport equation (RTE) based on utilization of a Physics-Informed
Neural Network (PINN) model is explored. Through benchmarking and validation against established numerical methods,
PINN demonstrated the effectiveness and accuracy for the considered problems. Our future work is focused on 2D and 3D
geometries with higher dimensional systems.  Detailed investigation into angular quadrature rules and sampling methods
are  presented.  For  an  isotropic  medium,  the significance  of  extinction  coefficients  on  radiation  intensity  and flux  is
explained. Findings of this work is pivotal. This study provides a kick-start approach to tackle high dimensionality curse of
RTE problems. Fast and reliable PINN based solution provides better theoretical understanding of radiative heat transfer in
scattering media. 
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