
Proceedings of the 12th International Conference on Heat Transfer and Fluid Flow (HTFF 2025)
Paris, France - August, 2025 
Paper No. HTFF 211
DOI: 10.11159/htff25.211

HTFF 211-1

Physics Informed Neural Networks for Temperature Fields of 
Convective Heat Transfer 

ChiIao Ma1, QingLong Jin2, Yan Su3

 Department of Electromechanical Engineering, FST, University of Macau, Taipa, Macau
mc45171@connect.um.edu.mo; yc47440@connect.um.edu.mo; yansu@um.edu.mo  

Abstract – A physics informed neural network (PINN) improved from the artificial neural network (ANN) is applied for prediction of
temperature fields for convective heat transfer in a two-dimensional channel. The inlet flow at a constant high temperature is cooled by
the square channel walls at constant low temperature and is fully developed at the outlet.  The entrance lengths for the temperature and
velocity fields are varying.   The PINN integrates physical information into the network structure for training, which makes implement
of the physical constraints practical. In the present study, the physical constraints are presented by the residuals of the heat transfer
equations. Both ANN and PINN can provide good prediction results for both temperature and heat transfer coefficient distributions.
Compared to the ANN, the PINN with residuals of the heat transfer equations can obtain a higher accuracy in predicting temperature
fields and converge at faster speeds. 
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1. Introduction 
With the development of machine learning, Artificial Neural Network (ANN) has been widely used to solve various

physical problems such as furnace mechanics, heat transfer, and mechanics. [1-3] However, NNs do not directly consider the
physical equation as a data fitting method that does not allow strict physical consistency. Physical equation constraints are
added to the loss function for physics informed neural network (PINN) [4,5] to ensure the solutions are not only data-driven
but also conform to the physical laws of the problem being studied. Therefore, PINNs are able to immediately process
complex and nonlinear problems that are difficult to solve with traditional numerical methods, especially partial differential
equations (PDE) problems in high dimensions and complex geometries.

Many researchers have introduced PINN into natural convection problems. Wang et al. [6] applied PINN to flow and
heat transfer problems in natural conventions and analyzed the influence of the number of training datasets to the prediction
of natural convection velocity fields and temperature fields in PINN when the Reynolds number under 1000 is put into
practice. It was found that for natural convection problems with complex geometries, more sample points are needed for
PINN to achieve better prediction results for natural convection problems with complex geometries. A composed framework
based on PINN and graph convolution network (GCN) is introduced by Peng et al. [7] and has exhibited excellent geometric
adaptation and prediction capability. In comparison to purely data-driven ANN, this framework effectively reduced the error
between the prediction results and actual values. The effect of variables such as the loss function, optimizer, network structure
and activation function is analyzed on the accuracy and convergence of PINN by Hashemi et al. [8]. The results show that
PINN is able to fit the temperature and velocity fields in natural convection better. However, in the condition of a higher
Rayleigh number, the accuracy of the prediction is compromised by too few sample points.

In addition to natural convection problems, PINN has also been applied to other typical thermodynamic and fluid
dynamic problems. Jalili et al. [9] demonstrated the energy transfer and flow properties during the growth of vapour bubbles
in superheated liquids using PINN technologies. Three different fluids are used to conduct the testing. Through combining
the results of the analytical solutions and CFD calculations, a stable simulation of the liquid-gas phase change process during
fluid evaporation and capturing the effect of surface tension is offered by PINN. Jin et al.[10] have introduced PINN to
problems such as cylindrical bypassing to analyze the influences of dynamic weights and fixed weights on improving the
accuracy of PINN and the relationship between the loss of boundary conditions and the loss of residual error of the governing
equation. A combination of thermal image technologies and PINN is applied by Cai et al. [11]. They proposed a new method
based on PINNs to infer the full continuous three-dimensional (3D) velocity and pressure fields from snapshots of 3D
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temperature fields obtained by thermal image technologies. By only relying on the temperature fields provided by thermal
image technologies, the instantaneous velocity and pressure overlying the espresso are able to be simulated and the influence
results of PINNs for unsteady velocity fields in the central plane were verified through independent example image velocity
experiments.

Raissi et al. [12] established two different algorithm types for continuous time models and discrete time models by
studying the data-driven equation solving and the identification of partial differential equations for data-driven by applying
PINN. Moreover, Raissi et al. [13] investigated the problems of the free vibration of a cylinder due to the lift using PINN.
The corresponding physical equations were derived based on the PINN inversions of unknown physical parameters such as
Reynolds numbers and Peclet numbers. A PINN model that gets rid of the dependence on datasets was proposed by Li et al.
[14]. In this PINN model, the original data loss function was replaced by the physical loss. Through iterative training, a three-
dimensional temperature field was effectively predicted without labelled data. In comparison to the prediction results of this
PINN model with the finite element calculation results, the maximum relative error was about 2%. Apart from this, the PINN
model can quickly improve the calculation speed while maintaining the accuracy through introducing transfer learning
methods.

In the present study, a PINN improved from the artificial neural network (ANN) is applied for prediction of temperature
fields for convective heat transfer. Prediction accuracy and convergence speed of PINN will be compared with those of ANN.

2. Problem Definition and Governing Equations 
The sketch of the physical model and boundary conditions are plotted in Fig. 1.  As shown in Fig. 1, the constant high

temperature flow runs into the square channel with a constant high temperature Thigh and velocity uin.   Boundary walls of the
channel are fixed at low temperature Tlow. With a length scale of the channel height L=H, velocity scale uin, temperature scale
ΔT = Thigh − Tlow , the dimensionless numerical model is shown in Fig. 1. The corresponding dimensionless governing
equations for conservation of momentum and thermal energy are shown as 

, (1)
where Re is the Reynolds number, Pe is the Peclet number defined as Pe = RePr.

Fig.1:  The sketch of the convective diffusion model with boundary conditions
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3. Prediction with Physical Loss
The structure of an ANN is plotted in Fig. 2 (a). It can be seen that the model consists of a multi-layer network structure

including an input layer, a hidden layer and an output layer. The neural network calculates the objective function through
forward propagation and back propagation is used to transmit the error that affects the weight matrix and bias vector.  The
forward propagation follows the following linear and non-linear variations to fit the objective function

, (2)
where σ is the activation function and defined as tanh function. Back propagation is the core algorithm for training neural
networks and is also the most critical step. It is mainly used to optimize the weights and biases of the network through
gradient descent to minimize the loss function. The loss function measures the difference between the actual value and the
predicted value through the network. MSE Loss Ldata is selected as

, (3)
where oi is the prediction value of the neural network, yi is the ground truth (GT) value, i represents the number of features
of the prediction value.  

The improved structure of a PINN is shown in Fig. 2 (b). The PINN is extended from the basis of traditional artificial
neural network. The extra layers of gradients are automatically calculated during the feed forward step.  Then, the gradients
obtained are applied to calculate the residuals of the governing equations, which is applied as the physical loss as

   . (4)

The total loss function of PINN consists of two parts: the data loss and the physical loss. Hence, the total loss is composed
by two items as

data phyL L L 
. (5)

Then, the loss function influences the weight matrix and bias vector through back propagation. By adding the physical
residual loss to the total loss function and influencing the weight matrix through back propagation, the neural network is
restricted by physics information and fitting an objective function that satisfies the partial differential equations with higher
accuracy.

       

(a) ANN                                                           (b) PINN
Fig. 2:  A diagram for comparison of the two structures of the ANN and PINN. 
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4. Results and Discussion

4.1. Loss function and accuracy
The data loss functions with the training set epoch of the two types of prediction models are plotted in Fig. 3. As

illustrated in Fig. 3, whether it is ANN or PINN, the data loss based on the training and validation sets gradually decreases
with the increases of epoch and the convergence of two models both reaches a stable level. It needs to be clarified that for
the training set, there is no significant difference between the ANN model and the PINN model at the initial stage.  While,
the training set for PINN at the end results in a slightly higher value than the ANN.  However, it is noticeable that the loss
function of PINN is obviously lower than ANN using the validation set. This result shows that the performance of PINN is
improved effectively by adding partial differential equations as residuals. In comparison with ANN calculation results, PINN
effectively reduces the data loss and improves the model performance as a model that contains physical information. A further
analysis and comparison of the accuracy of the two models are shown in Fig. 4. As shown in the figure, whether it is the
training or validation sets, the accuracy calculated by the PINN model is higher than the prediction result of the ANN model.
Compared to the ANN, the accuracy of PINN is about 3‰ higher, and the loss function converged at a speed of 4.2% faster.

                                                            (a)                                                             (b)
Fig. 3: Comparison of the loss function curves of ANN, PINN models

       
 (a)                                                             (b)

Fig. 4: Comparison of the accuracy curves of ANN, PINN models
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4.2. Velocity fields
The distribution of horizontal velocity component u is shown in Fig. 5. A constant velocity inlet condition is imposed

on the left side of this velocity field and fluid flows from left to right where it is a free outflow. As simulation time progresses,
the internal velocity field gradually develops into steady state fully developed flow profiles with the velocity for top and
bottom boundaries being zero and the velocity in the middle is relatively higher, which forms a steady flow structure of an
acceleration of velocity from left to right.  Due to the fact that the initial inlet velocity is constant, the fluid is affected by the
wall friction after entering the channel and the velocity of the cross section is generally transmitted from uniform distribution
to typical parabolic distribution. It is also found out that the entrance length is about 0.4L. In the central and downstream
regions (x>0.4L) in the channel, the distribution of contour lines is converging to parallel and the cross-section of velocity is
steady.  The flow has evolved into a fully developed laminar structure with typical characteristics of maximum velocity at
the middle and a rapid decrease in velocity at the boundaries. The whole velocity field maintains symmetry along the x-axis
and presents a typical dynamic behavior of a two-dimensional stable flow field.

The distribution of the vertical direction velocity field v is displayed in Fig. 6. As shown in Fig. 6, the entire velocity
field v contains four zones. The velocity v is gradually converting from negative to positive along the y-axis. This is because
the inlet velocity is distributed at a constant speed and without a vertical gradient, resulting in a rapid shear near the top and
bottom walls after entering the fluid and the backflow formed near the upper wall surface by obstruction which is a typical
boundary layer separation effect. Similar to the upper wall surface, the velocity near the wall surface is zero because the
lower wall surface is no-slip. The amplitude of velocity v fluctuations is diminished and progressively approaches zero in
this region. This situation indicates that fluid returns to the main horizontal transportation state and the flow is dominated
along the x-axis by the u velocity. Meanwhile, the gradients of v  decrease when approaching the outlet. According to Figs.
6 (b) and (c), the prediction results based on the ANN and PINN models are essentially similar to the GT results.

4.3. Temperature fields
The temperature fields are shown in Fig. 7.  As shown in Fig. 7 (a), the temperature is highest at the position x=0 which

is the boundary of the red heat source. The temperature is gradually reducing along the x direction. It can be clearly seen that
the heat is mainly transported along the horizontal flow direction and continuously diffuses vertically towards the upper and
lower boundaries during the process which forms a typical convection-diffusion coupled temperature field structure. The
isotherms show a more obvious temperature gradient and thermal boundary layer effect in the figure because the lines are
dense and curved near the boundary. In parallel, the central area remains at a higher temperature. The distribution of
temperature in the right outlet area is moderately tend toward gentle which reflects the natural dissipation process of heat
flow in the channel. This indicates that the heat flow is mainly driven by horizontal transportation and maintains a strong
vertical diffusion. With comparison of the u velocity field in Fig. 5, the entrance length of the temperature field is much
larger than the entrance length of the flow field. From Fig. 7(b) and 7(c), both ANN and PINN predicted the temperature
field well. 

The Nusselt numbers predicted by ANN and PINN are compared with the GT results in Fig. 8.  Where Nux is the Nusselt
number along the x direction, and Nuy is the Nusselt number along the y direction. The scaled values according to the
reference Nuref are defined as

*

ref/Nu Nu Nu (5)
The block dots are Nuy*(x) at the bottom boundary along the channel length in x* direction, reflecting the characteristics of
gradual weakening of the temperature gradient at the wall as the flow is developed.  The red diamonds represent the Nux*(y)
at the left wall along the y* direction, exhibiting a symmetrical distribution in which the temperature gradient is maximum
near the wall and minimum at the central axis. Two curves are highly consistent with the temperature field temperature which
revealing the variation rule of local heat transfer intensity with spatial location under convection-diffusion coupling.
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u*

(a)                                                         (b)                                                           (c)
Fig. 5: Comparisons of the velocity-u* fields: (a) the GT distribution, (b) the ANN results, (c) the PINN results

v*

(b)                                                         (b)                                                           (c)
Fig. 6: Comparisons of the velocity-v* fields: (a) the GT distribution, (b) the ANN results, (c) the PINN results

T*

(c)                                                         (b)                                                           (c)
Fig. 7: Comparisons of the dimensionless temperature fields: (a) the GT distribution, (b) the ANN results, (c) the PINN results
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(a)                                                        (b)                                                           (c)
Fig.8: Comparisons of the Nusslet number: (a) the GT distribution, (b) the ANN results, (c) the PINN results

4. Conclusion
The temperature and velocity fields of convective heat transfer in a square channel are predicted by both ANN and PINN.

The results show that PINN model performance better compared to conventional ANN with extra physics information
represented by the residuals of the governing equations. Compared to the ANN, the accuracy of PINN is about 3‰ higher,
and the loss function converged at a speed of 4.2% faster.  
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