Proceedings of the 11th World Congress on Mechanical, Chemical, and Material Engineering (MCM'25)

Paris, France - August, 2025 Paper No. HTFF 225 DOI: 10.11159/htff25.225

Flow Control Using Interference of Two Pulsating Jets with Phase Difference

Ryota Kobayashi¹, Koichi Nishibe², Kotaro Sato³

¹ Mechanical Engineering Program in the Graduate School of Engineering/Kogakuin University 2665-1 Nakano-cho, Hachioji-shi, Tokyo 192-0015, Japan am25042@ns.kogakuin.ac.jp

² Department of Mechanical Engineering/Tokyo City University
1-28-1 Tamatsuzumi, Setagaya-ku, Tokyo 158-8557, Japan
³ Department of Mechanical System Engineering/Kogakuin University
2665-1 Nakano-cho, Hachioji-shi, Tokyo 192-0015, Japan

Extended Abstract

Jet technology is used in many fields such as air conditioning, cooling, flue gas treatment, cutting, cleaning, printers, combustion acceleration, aircraft thrust generation, attitude control, and so on. Research on the jet control has been conducted for many years from various viewpoints. Conventional jet flow control has been mainly based on geometrical methods such as louver angles and variable nozzles. Recently, non-mechanical control methods using unsteady jets such as synthetic jets have been proposed [1]-[3]. However, it is difficult to generate synthetic jets with large momentum, and it is currently impossible to apply them to fluid machinery that requires large momentum. Therefore, a pulsating jet that combines the characteristics of both a continuous jet and a synthetic jet have been considered promising for high momentum flow control. Previous studies have already clarified the fluid behavior and mixing characteristics by interfering continuous and pulsating jets [4], and some insight has been gained into the behavior of impinging pulsating jets [5]. It has also been reported that the direction and width of the jet can be controlled by applying phase differences between pulsating jets [6], [7]. Recently, it has been shown that for two pulsating jets with the phase difference π in the exit velocity, the formation of the substantial jet is determined by the non-dimensional amplitude of the jet, and the structure of the jet can be controlled by time variation of the velocity [8]. However, parametric reports examining how frequency affects the flow field when two pulsating jets interfere with the phase difference π is still insufficient.

In this study, the influence of non-dimensional frequency with the phase difference π on the jet structure and fundamental flow characteristics of interference between two pulsating jets is investigated mainly by numerical calculations. Numerical simulations were performed using the scFlow solver, an unstructured grid-based thermal-fluid analysis system. The velocity amplitude $U_{sa} = 1$ m/s and the time-averaged velocity $U_{sc} = 3$ m/s were used for the flow velocity. The non-dimensional $f^* = 1.83 \times 10^{-3}$, 3.67×10^{-2} , 7.33×10^{-2} , 1.47×10^{-1} , 2.93×10^{-1} is used as a parameter, The non-dimensional number $\frac{c}{b_0} = 9.09 \times 10^{-2}$ where c and b_0 are the slot pitch and slot width, respectively. The standard k- ϵ model is used for the turbulence model, and the number of meshes is about 200,000. The main results show that the jet width can be increased

by decreasing the non-dimensional frequency of the two pulsating jets with the phase difference π , and that the decay process of the jet center velocity depends on the non-dimensional frequency. In addition, the interference with the solid wall was discussed for several frequencies of the pulsating jets.

References

- [1] K. Nishibe, Y. Fujita, K. Sato, K. Yokota and T. Koso, "Experimental and Numerical Study on the Flow Characteristics of Synthetic Jets," *J. Fluid Sci. Technol.*, vol. 6, no. 4, pp. 425-436, 2011.
- [2] R. Kobayashi, K. Nishibe, Y. Watabe, K. Sato, and K. Yokota, "Vector Control of Synthetic Jets Using an Asymmetric Slot," *ASME J. Fluid Eng.*, vol. 140, no. 11, p. 051102, 2018.
- [3] H. Zong and M. Kotsonis, "Formation, Evolution and Scaling of Plasma Synthetic Jets," *J. Fluid Mech.*, vol. 837, pp. 147–181, 2018.

- [4] Y. A. Altaharwah and C. M. Hsu, "Flow and Mixing Characteristics of Single-Pulsed Dual Parallel Plane Jets," *Results in Engineering*, vol. 25, p. 103741, 2025.
- [5] D. Mirikar, P. Sharma, and H. Yadav, "Flow and Heat Transfer Behavior of Acoustically Excited Pulsating Air Jet Impinging on a Flat Surface," *International Journal of Thermal Sciences*, vol. 208, p. 109417, 2025.
- [6] C. Ichihara, D. Yamaguchi, R. Kobayashi, K. Nishibe, K. Yokota, and K. Sato, "Control of Jet Structure Utilizing the Change in the Outlet Velocity Distribution with Time." in *Proceedings of the International Symposium on Rotating Machinery*, ISROMAC, 2019.
- [7] M. Takano, K. Nishibe, D. Kang and K. Sato, "Jet Flow Control Using Velocity Distribution Change With Time At Slot." in *Proceedings of the 33rd International Symposium on Transport Phenomena*, Kumamoto, Japan, 2023.
- [8] M. Takano, K. Nishibe, D. Kang, K. Sato, "Influence of Interaction of Two Pulsating jet with Phase on Flow Characteristics" in *Proceedings of the 10th World Congress on Mechanical, Chemical, and Material Engineering (MCM'24)*, 2024