Proceedings of the 11th World Congress on Mechanical, Chemical, and Material Engineering (MCM'25)

Paris, France - August, 2025 Paper No. ICCPE 131 DOI: 10.11159/iccpe25.131

Starch-Integrated Amine-Functionalized Terpolymeric Hybrid Gels: Role of Functional Groups in Swelling, Elasticity, and Tartrazine Adsorption

Rabia BOZBAY*, Nermin ORAKDOGEN

Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey

E-mail: bozbay19@itu.edu.tr, orakdogen@itu.edu.tr

Multi-responsive hybrid hydrogels and cryogels were designed by incorporating corn starch (CS), a homopolysaccharide, varying amounts into the cationic terpolymer poly(dimethylamino ethyl methacrylate-co-glycidyl methacrylate-co hydroxypropyl methacrylate) (DMAEMA-co-GMA-co-HPMA) by free-radical crosslinking (cryo)polymerization of the crosslinker diethyleneglycol dimethacrylate (DEGDMA) in aqueous solution. For producing multicomponent networks, starch-integrated amine-functionalized terpolymeric hybrid hydrogels and cryogels were synthesized at 8 °C and -18 °C, respectively. Hybrid gels were prepared by the feeding mole ratio DMAEMA/GMA/HPMA: 70/10/20, to investigate the effect of hydroxyl groups in the structure of CS on cationic ternary gel matrix properties. Structural characterization was performed using ATR-FTIR, XRD, DSC, and TGA, and mechanical properties, dynamic/equilibrium swelling behavior, and dye-adsorption mechanisms of hybrid gels were investigated. Due to their exceptional ability to form well-structured gel networks, the effect of the increase in starch content on the water uptake rate, gel elasticity and equilibrium swelling degree was investigated depending on the hybrid composition.

Keywords: Starch, Cationic hydrogel, Swelling, Adsorption, Multiresponsive Network, Amine-functionalized gel, Biobased polymeric network.

Acknowledgment

This study was conducted by Istanbul Technical University, Institute of Science and Technology, and was supported as part of the PhD thesis by the Scientific Research Projects Coordination Unit of Istanbul Technical University (Grant number: 45770) and by the Scientific and Technical Research Council of Türkiye (TUBITAK) 1002-B project (Project number: 125Z220). Additionally, this congress participation was supported by the 2224-A Grant Program for Participation in Scientific Meetings Abroad (Grant number: 1919B022502576). R.B. gratefully acknowledges the support of TÜBİTAK-BİDEB 2211-E PhD Scholarship Program.

References

- [1] OKTAY, Salise, et al. Chemical modification techniques of corn starch for synthesis wood adhesive. *International Journal of Adhesion and Adhesives*, 2024, 128: 103545.
- [2] BOZBAY, Rabia; ORAKDOGEN, Nermin. Multifunctional poly (methacrylate ester) s-based terpolymer cryogels with basic amino groups: Correlation of elasticity and structural properties with composition. Reactive and Functional Polymers, 2021, 168: 105060.