Proceedings of the 11" World Congress on Mechanical, Chemical, and Material Engineering (MCM'25)
Paris, France - August, 2025

Paper No. ICMIE 137

DOI: 10.11159/icmie25.137

Boundary Value Problems of Coupled Thermoelastodynamics on a Star
Graph

Lyudmila Alexeyeva!, Assiyat Dadayeva!-

! Joldasbekov Institute of Mechanics and Engineering,
Shevchenko street, 28, Almaty, Kazakhstan
alexeeva@math.kz; dady1262@mail.ru
2 Kazakh National Research Technical University named after K.I.Satpayev,
Satbayev street, 22, Almaty, Kazakhstan

Abstract: In this paper, boundary value problems of coupled thermoelasticity on a star graph are considered, for example, for analyzing
the state of network structures (oil pipelines, gas pipelines, housing networks). Based on the method of generalized functions, a universal
technique for solving boundary value problems on such graphs is developed. Generalized solutions of non-stationary boundary value
problems are constructed under various conditions at the ends and with transmission conditions in the common node of the graph.
Equations of connection for the boundary functions (displacements, stresses, temperature, heat flux) included in the generalized solutions
are obtained. Regular integral representations of solutions to boundary value problems are obtained using the fundamental solution in the
space of Fourier transforms. The results obtained allow modeling the action of various heat sources, including concentrated ones, using
singular generalized functions. The method of generalized functions allows solving a wide class of boundary value problems, including
those with local boundary conditions at the ends of the graph.
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1. Introduction

There are models of uncoupled and coupled thermoelasticity. A thermoelasticity model is related if a temperature
gradient is included in the motion equation in the displacements. And the equation of thermal conductivity includes a term
associated with the rate of change in volumetric deformation. If you neglect this term in the equation of thermal conductivity,
then the model is called uncoupled.

A great contribution to the development of the theory of thermoelasticity was made by Nowacki W. [1,2]. He justificated
the models of coupled and uncoupled thermoelasticity, considered a whole class of quasi-static and dynamic thermoelasticity
problems. There is detailed overview of researches on thermoelasticity in the encyclopedia [3].

Boundary value problems (BVPs) of coupled thermoelasticity belong to those classes of problems that rarely have an
analytical solution even for simple structures such as beams and rods. There are few works related to the study of BVPs on
thermoelastic graphs. For example, in [4], discrete Yamabe equations on star graphs were studied, resulting in a proof of the
existence of nontrivial solutions. The asymptotic behavior of signal transmission of elastic and thermoelastic rods on star-
shaped meshes was considered in [5] and the existence of exponential, polynomial, and slow signal attenuation rates in a
thermoelastic mesh system was proven.

The authors in the works [6-8] developed the method of general function (GFM) to solve the BVPs of uncoupled and
coupled thermoelastodynamics. Boundary integral equations (BIEs) were built in the space of Laplace transformations in
time. The uniqueness of the set boundary problems, including taking into account shock waves, has been proven [9].

Spatially one-dimensional boundary value problems of thermodynamics using the model of uncoupled thermoelasticity
were considered in [10,11].The solutions the Dirichiet problems on a star graphs were constructed for wave equation in
[12,13]

The novelty of this work lies in the fact that based on the method of generalized functions, an analytical solution of the
associated thermoelasticity problem on the star graph is obtained. Moreover, advantage of the method is that there is no need
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to re-solve the new task (Dirichlet or Neumann). In the resulting system of algebraic equations (in the corresponding matrix),
only known boundary functions should be changed. So, a unified technique has been obtained for solving non-stationary
initial-boundary coupled thermoelasticity on a star graph consisting of N edges.

2. The thermoelastic star graph
We consider a star graph which contains N edges (Ao R Aj) of the length L ; (j=1,2,...,N) with a common node A4, (Fig.

1). On each edge A, = {x eR :0<x< L, }, there is a coordinate system (X,#) whose origin can be found at A4,

xlej = 0. The end of edge is xzngLj.

A

oA

A,

Figl. Star graph

At A ; the displacement u j(x,t) and temperature O j(x,t) satisfies the following equations of coupled
thermoelasodynamics [1,2]:
0% ;(x,1) 0% (x,1) 00 ;(x,1)

J ax2 J 8t2 J

+p ;i F,(x,1) =0,
(D
azej(x’t) —KTI 8e(x,t)_ . azuj(xst)
ox? 4 ot 7 oxor

+F, ;(x,t) =0.

Here P, E ; are the mass density and the Young module, i = \/m is the velosities of longitudinal elastic waves
in the edge; K is the thermal diffusivity coefficient of the j-th edge,y ; =a jE j» O is the coefficient of thermal
expansion, N j is specific material constant, which determines the influence of the deformation rate on the change in body
temperature. In uncoupled thermoelasodynamics 1 ; = 0.

Acting power and heat sources on the j-th edge £, ,(x,?), F,;(x,t) are known functions, which belong to the class of

generalized functions of slow growth on S'(A ).

The thermoelastic stress on the j-th edge is determined by the Duhamel-Newman:
o,(x0)=E u, -9, . 2)
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Let us consider local boundary value problems of coupled thermoelasticity for a star graph, the solutions of which satisfy
the initial and boundary conditions. Here and further, we denote

ou, ou ou. O’u, o’u,

— J u.. = J u — J u — J u — J

/9 3 ot b /o 2 7o b /9 N
et T e Y e e Y v

u
We consider the following boundary value problem.

3.The statement of the first BVP of thermoelasticity on star graphs
Cauchy conditions. The initial conditions at ¢ = 0 for the displacement and temperature on the graph are known:

, . ou,(x,0) .
u (x,0)=uy’(x), 0<x<L;, uj(x)=0; o =1y’ (x), 4y(0)=0, 0<x<Lj; 3)
0,(x,00=6,/(x), 0<x<L, 6J(0)=0,, 1=0,j=1..,N.
Dirichlet conditions. Displacement end temperature values are known at the ends of the graph:
u(L;,0)=w; (1), (4)
0,(L;,1)=6{(t), t20,=12,.,N. ®))
The boundary functions satisfy the following conditions:
u;(L;,1)e C(0,0), 6,(L;,1)eC(0,). (6)
The following transmissions conditions are specified in the common node A, of the graph:
w{ () —d,wm (1) =0, x=0, %
0,(t)—06/()=0, t>0,j=2,.,N.
®)

N N
> bo (0,0)=P@), D> K0, (0)=G1), x=0,1>0.
j=1 j=1

Here we denote w/ (1) = u;(0,2), 0/ (t) =0 ,(0,1), 6,(0,)= E, u,,, (0,1)-y 8,(0,)) = E ,p (1) -y 8/ (1).
Constants d]. , bj are depended on the graph construction, P(¢) € C[0,©), G(x,t) € C[0,).

We construct the solution of this BVP using the generalized functions method.
At first we consider the BVP of thermoelastisity at one edge of graph to define the connection betveen boundary

values of displacements, temperature and their derivatives at edge ends:
w/ (), w) (1), pl (1), p3 (1).8] (1),8) (1),¢] (1),q3 (1), j=1...,N.

3.1. Generalized solution on the edge of a graph
To define the connection between the boundary values of the displacement, stresses, temperature and heat flows on each
elements of a graph, at first we consider the solution on an edge of graph.
Let’s define u(x,?),0 (x,?) is the solution of the thermoelastisity eguations on the edge:
Czu’xx _u’tt _'YB >x +E (X, Z) = Oa
(€)]

0, -« 0, nu,, +F(xt)=0, 0<x<L.

S XX
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Here v =7y / p . The index of the edge is omitted.
The the displacement and temperature is known at ¢ = 0:

u(x,0) =, (x),0(x,0)=0,(x), u,(x)eC*(R").0,(x)eC*(R"), 0<x<L. (10)

Displacement end temperature values at the ends of the edge we denote:
w,(0,8) =w,(?), w,(L,t) =w,(t), 0<x<L,t20. (11

0,(0,)=0,(t),0,(L,1)=0,(t), 0<x<L,t>0. (12)

To determine the solution (9), we use the solution of the boundary value problem on a thermoelastic rod, previously
constructed using the method of generalized functions, in [10]. It has the following form:

u (x,t)H (L —x)H(x)H(t) =—F(x,0)*U, (x,1)- E,(x,0)*U} (x,t) +

+CHOY D {070, (0)*U} (r=(k=DL1) +w,(O#U;., (x=(k=DL.) b

> (13)
FH ()Y (- {qk ()=, (0) U (x= (k= DL, 1) +0, () * U2, (= (k —1)L,t)}

“H(L —x)H(x){uo<x>*U: () + Uy (1)U}, (w)}m £ (0 O} (r=(k=DLur)-
x =l

X

~H(x)H (L —x)|:K_190(x) +n a“g(x)}*Uf (x,1).
|

0 (x,t)H (L - x)H (x)H(t) =—F (x,0)*U, (x,1)- F, (x,0)*U; (x,) +

+EHOY (D" {010, (0 UL (= (k=DL0+w, (UL, (x—(k=DL1)
+H (XD g, 0095 0)*U7 (= (k=DL0)+6,(0* U2 (x-(k-DLo) - 1Y

-H(L —x)H(x){uo () ¥ UL (6, )+ 1, (x)#UL, (x, t)}+n kél (1, (VU3 (x= (k= D)L,1)-
X * =

—H(x)H (L- x){l('leo(x) +n a”g(x)} *U; (x,1).
|

j
Here Green tensor U/ (xt) is matrix of fundamental solutions. It is the solution of system (9) under the action of the
impulse concentrated source F =(F,F,)=35(x)5(t)8/,8/), j=1,2 was obtained in [7]. The variable under the convolution

sign 6] shows convolution over the variable x .

The formulas (13),(14) determines the displacement and temperature inside a rod using known the displacements and
temperatures at its ends. To determine unknown boundary functions (stresses, heat flows), it is necessary to construct

connection equations between the boundary functions w, (¢), w, (¢), p, (¢), p,(?),0, (1),0,(?),q, (t),q,(?).
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3.2. The equations of connection between boundary functions on edge of grap in Fourier transformation
space in time

To define the Fourier transform of the generalized solutions (15)-(16), we use the Fourier transform of of solution
(13),(14) :
i (x,0)=—F (x,0): U, (x,0)- F,(x,0)+U; (x,0)+
+c2§2:(—1)’f“ {(7.©)=170,(@))0, (x= (k=) L,0) + 7, @)T,., (x= (k=)L) }+ (15)
+H (£)Y (=D {(7, (@)~ iomw, ()T} (x = (k=) L,0)+0,@)0;., (x— (k=D L)}
g(x,w)= ~F (x,0)*U) (x,0) - F,(x,0)*U; (x,0) +
2 _ _ _
4 Y () (B ©) 19, ©) )03 (x= (k=D L,0) + W, @)T}., (x—(k=DLo) }+  (16)
k=1
2 _ _ _
3 (D7, @) —iemw, (0))U; (x = (k =D)L, )+0,@)0;., (x-(k-DLo)}.
k=1

Here

U ]j (x,0)= ig;gn;):; { 0K~ [Sm\;%/i s1n\/x7\/_] (\/7 sin x\/7 \/7 sin x\/7 )}
f’(;gng; cosxT, —cos T ), =
Uzj (x,m)= _Seny) n(x) {lwnﬁf (cos x\/7 cos x\/—) [sm x\/7 sin xf]éf

200, =) NS J
+c’ (@sinxﬂ—ﬂsinx@)@{}, j=12.

(17)

7»1,2(0)):2%)2 §+i(oc+[3)i\/(co+i(oc—ﬁ))2 —40f ,o=yn, B=ck"

From Egs (15), (16) the connection equations for boundary functions (wj (x,0),0,(x,0), p;(x,1), q,;(x,1), j = 1,2) have
been constructed.

Theorem 1. The Fourier time transformants of the boundary functions on the edge satisfy the following system of linear
algebraic equations in the matrix form:
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A(m)x g‘ + B(o)x gz = F(o).

1 2
9 7
0.5 0 0 0
(@0, +ionT?) - —cULo) (V0 -T7) U (Lo)
Ass= 0 0 0.5 0 ’
(@0, +oMT}) - =Ty (L) (czmg_Ug,x)(M) U2 (L,o)

(@0, +ionT?) | EUN-Lo) ~(0-02,) , U(-Lo)

x=—L)
B 0.5 0 0 0 :
(@O, +iemU) - CUNLo) —(c¥0-03.,)_, Ui(-Lo)
0 0 0.5 0

FM:—{E’:U11+F2TU12)FO,(E’:U11+Fz’:U12)x=L,(FljUé+FZTU§)X=0,(E’:Ué+Fz’:U22)x=L}. (18)
We write this system in the next matrix form:
M(w)x X(»)=F(®), (19)

where M, ( = {A4X . B, 4} is the matrix of conection of the boundary functions on the edge:

Xy, =W (@), B ().0,(®), §,(®), 7, (), 5, (®).0, (©).7, (@)} . (20)

3.3. Resolving system of equations for determining boundary functions on a star graph

Let us return to the consideration of the first BVP problem on a thermoelastic star graph (Fig. 1). On each edge
A )= L,..., N, of the star graph, we have the following system of 4 linear algebraic equations to determine 8 boundary

functions:

M’ (0)x X/ (@)=F/(0), j=L..,N. 1)

Here j isthe number of the corresponding graph edges, M is the matrix of conection of boundary functions (19) on
the j-th edge which has the form:

A .. .. A B .. .. B
M (@)= {A' @), B@)}=1"

J J J J
Al ... .. 4, Bl .. .. B
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Its components are defined by formular (17) for U l.j (x,®) with use thermoelastic parameters and the length L; of this

edge.

Thus, we have 4N equations for 8N sought boundary functions. If we add to them 2N Dirichlet conditions at the end of
the graph (4),(5) , and 2N transmission conditions at the node of the graph (7),(8) , then we obtain a complete resolving
system of linear algebraic equations for determining the Fourier transforms of the 8V sought boundary functions. Let us
formulate this statement as a theorem.

Theorem 2. The resolving system of the Dirichlet boundary value problem (1) - (8) on a star graph with N edges has the

following form:
W(@)*Y(0)=D(),
and its solution is equal to
Y(®)=W "' (o) D). (22)
Here the matrix W () has the dimension 8N x 8N . The first 4N rows contain the matrixes of connection of boundary
functions for each edge of this graph M/ (®). The next 2N rows discribe transmission conditions at the node of the graph

(7),(8) and next 2N rows the Dirichlet conditions (4),(5) at the ends of the graph.

The vector Y,

<1 contains N boundary functions X’ (20) which correspond to j-th of grapf:

Y= {X'©),X @) X" @),

D(w) = {F1 (0),F*(®),...,F" (co),C((o)}T is the vector which contains actions of external forces and heat flow (18)

in according to j-th edge of the grapf (4N component) and the vector C.

Components of C (0)) contain the right part of 2V transmissin conditions (7), (8) and 2N boundary conditions (11), (12)
on the ends of graph adges.

Further, substituting X/ (o) = (sz{ 00,0, ¢’ wl,pl.0,).q] ) in the corresponding components of Y for j-edge into formulas

(20), (21) we get the displacement and temperature it any its point.

So we get the values of u;(x,®), (i(x,(o) (j=1,..., N) at any edges of this star grafh.

Performing the inverse Fourier transform, we obtain originals u,(x,7),0 (x,f) at any point x of this star grath. Thus, the

displacement and temperature on the star graph are determined at any time ¢ at any edge. So BVP of coupled
thermoelasodynamics for a star graph has been solved.

4. Conclusion

The method of generalized functions presented here allows not only to solve a wide range of problems with different
conditions at the ends of the edges of the graph and the conditions of transmission in its common node, but can also be
extended to network structures of various types. This distinguishes this method from all others that are used to solve similar
problems.

The action of heat sources can be modeled by both regular and singular generalized functions under various boundary
conditions at the ends of the edges.
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The obtained regular integral representations of the Fourier transforms of the solutions allow to determine the
displacement and temperature on each edges and at any point of the graph for stationary oscillations with a frequency ® . In
the case of periodic oscillations that can be expanded in a Fourier series over time, the constructed transformations of the

solutions give a solution for each harmonic of the series with a frequency ® =®,, .
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