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Abstract - The investigation of transport movement in tunnels, transported cargo and fluids in pipelines leads to model problems on the
action of moving loads in a continuous medium. A feature of such problems is that the transport speed significantly affects the type of
differential equations, which parametrically depend on the ratio of the transport speed to the wave propagation speeds in the medium.
Therefore, when solving transport problems, different motion modes arise, which affects the type of transport equations on which the
properties of solutions and the choice of methods for constructing them depend. In this case, it becomes necessary to study the effect of
transport speed on the surrounding massif depending on its physical and mechanical properties. This paper is devoted to studying the
dynamics of a two-component Biot’s model under transport loads whose speed does not exceed the speeds of wave propagation in media
(subsonic loads). The Green's tensor of transport equations is constructed and, on its basis, their solutions are obtained for any type of
transport loads from the class of generalized functions, both regular and singular, concentrated on moving surfaces and lines. Numerical
calculations illustrating the wave dynamics of a two-component Biot’s model at subsonic speeds of transport loads are carried out.

Keywords: elasticity, two-component model, Biot's equations, Green's tensor, Fourier transformation

1. Introduction

In connection with the widespread construction of high-speed highways, there is an urgent need to study the influence
of the speed of a vehicle on the surrounding massif depending on its physical and mechanical properties. Such processes
have been studied best on the model of an isotropic elastic medium in the works [1-8] and others.

A real rock mass, in addition to elastic properties, has a number of other properties that have a significant effect on wave
processes. Therefore, complication of the mathematical model for a more complete consideration of the factors in force in
the study of wave, including seismic processes is absolutely necessary. Models that take into account the water saturation of
the structures that make up the earth's crust, the presence of gas bubbles, etc., are multicomponent media. There are various
mathematical models of such media. In paper to take into account the real properties of the rock mass, a two-component
Biot’s model is considered, containing two components: an elastic solid and a fluid component. The considered media allows
modelling the dynamics of soils taking into account their porosity and water saturation and more accurately describing wave
processes in it than the elastic medium model. For such a medium, dynamic processes are studied in [9-20] and others, to
transport problems the works, for example, [21-24] are devoted.

Here transport solutions are constructed and the dynamics of a two-component Biot’s model under subsonic transport
loads are investigated. Note that the Biot media is characterized by three sound speeds ¢;,¢,,¢;. Two of them describe the

propagation speed of longitudinal (dilation) waves of the 1st and 2nd kind, and the third one describes the transverse (shear)
wave. The construction of the Green's tensor of transport equations is given and, on its basis, their solutions are given for any
type of transport loads from the class of generalized functions, both regular and singular, concentrated on moving surfaces
and lines. To study the wave dynamics of the medium under consideration, numerical calculations of the obtained solutions
are carried out, and the corresponding graphs of a two-component Biot’s model at subsonic speeds of transport loads are
pictured.

2. Biot's equations

The equations of motion of a homogeneous isotropic two-component Biot’s model in the case of absence of fluid
viscosity are described by the following system of second-order hyperbolic equations [9, 15]:
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Where u$(xt) are the components of the displacement vector of the elastic skeleton, qu(X,lj are the components of the
displacement vector of the fluid, & Glf are the volume forces acting on the solid and fluid components, respectively. The
constants 4, 4, ¢, Rhave the dimension of stresses, the constants p,; p;, p,, have the dimension of density and are related
to the mass density of the particles that make up the skeleton pgand the fluid p,by relations:

P11~ (1—m)ps— P1s P = MP = P19, Poy = MP~ Pqy 3)

m is the porosity of the medium, U= d M= du;/ 0 X u;= 0 u;= 0 u;/ 0t Everywhere over the same indices in the

product, summation from 1 to 3 is performed (tensor convolution). For the medium under consideration, the relationship
between stresses and strains has the form of a generalized Hooke's law:

0= ,u(uf;j+ u{j) + ()\uz’k+ Qui,k 51./, o= —mp= (Quj;k+ Ruzk), “4)

Where pis the fluid pressure in the pores, o are the components of the stress tensor in the elastic skeleton.

Biot's model is characterized by three sound speeds. Two of them describe the propagation speed of longitudinal
(dilation) waves of the 1st and 2nd kind, and the third describes the transverse (shear) wave:

CZ — C}‘ + 2/1):022 + Rpll - 20,012
12 2(p11P22 = P12) a

_|_\/(O‘ + 2Dpyy = Rpy1)* + 4O+ 2Dp15 — Qpy)(Re1p — QPap)
B 2(p11P55 = P22)

HPoo
G = /— (6)
3 PPy =i,

where the upper sign in (5) corresponds to ¢; and the lower sign to ¢,. For real porous media, the inequality ¢, > ¢; > ¢,

holds, i.e., a dilation wave of the 2nd kind propagates in the medium more slowly than shear and dilation waves of the st
kind. When the connection between the fluid and the elastic solid is absent

)

Q-0, p;,—0 (7
we have

&) oy - qoe=Q+ 21 [ pyy . coe=R/ oy ®)

where ¢, is the speed of longitudinal waves in a solid skeleton, c,is the speed of longitudinal waves in fluid.

A class of transport solutions of the system of equations (1) — (2) is considered under the assumption that the mass force
acting in the medium moves with a constant speed ¢ along the x; in the opposite direction and in the moving coordinate
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system X = (X’,XZI,XSI,) = (X X, X + ct) does not depend on time, i.e. GI.= GI<X Xy Xy + Cl'). The sought displacements u;

have the same structure: u;= uf x;,%,,x; + ct). Then Egs. (1) — (2) can be written as:

N1
Wi Caxaxtiva T Hayax i Ui €\ PntiT Pty
02—t R2—u,, o+ G,y = AL+ s, o) (10)
axox i Naxax 37 Uit3 T a2\ 124 P2t 3

Here, for convenience, a six-dimensional displacement vector is introduced u= {LIS, u’} = {ul, Uy, Us, Uy, Ue, u6}, assuming
that u, are the components of the solid phase displacement for 7= 1,3 and the fluid for 7= 4,6 . Similarly, the vector of

mass forces G={G5,G8 = {6'1,62,63,04,65,06}- Uy Uy, Uyg

We will call Egs. (9) - (10) the Biot’s equations. The type of this system depends significantly on the speed of the
transport load ¢. When ¢< min (¢;,c,,¢;) the load is called subsonic, the type of equations is elliptic.

3. Green's tensor of Biot’s transport equations
We construct the Green’s tensor UI.]. - the fundamental solutions under the action of concentrated transport forces, which

are described by singular generalized functions of the form:
G= 61.15(,\'1 )6(%,)8(x5 + ct) = 51.15(,\’9 (11

Here 51.]. is the Kronecker symbol, (x’) is the generalized singular delta function. In this case, equations for Green's tensor
UI./. (dimensions 6x6) will take the form:

A+ Upeig+ HUjppac+ QU s 15~ P11 Ujaz = €1y Ui+t 51'/‘5(’() =0 (12)
QUi t RUicy 05~ py, Ujzz = Py, Uiis 3331 O+ 3)5(") =0 (13)

The components of Ul.j.have the following physical meaning: for 1 < /< 3 these are the j - th components of the solid phase

displacements, for 4 < ;<6 these are the (j— 3) - th components of the fluid displacements from the action of a
concentrated force along the 7- th coordinate axis on the solid phase (for 1 < 7< 3) or from the action of a concentrated force
along the (7— 3) - th coordinate axis on the fluid (for 4 < /< 6). It is necessary that the radiation conditions be satisfied:

suppUj(x) € R = {X'.'X?) > O} (14)
UI./.(XQ—)O for X:;,—)OO (15)

3.1. Green's tensor and its Fourier transform

In the construction of the Green’s tensor is used apparatus of integral Fourier transforms allowing you to transfer from
the differential equations for the tensor to linear algebraic equations for his image. Allowing the latter determine the transform
of the tensor in the form of fractional rational function of the variables of integral Fourier transforms and then restore the
original tensor, using the inverse transformation, it is often impossible. This leads to the attraction of the apparatus of the
generalized Fourier transforms. In the space of Fourier transforms, we obtain a system of linear algebraic equations:
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where ¢, are the parameters of the Fourier transform in coordinates, &= $8p k=13, j=13, i=16. Resolving this

system, we obtain the Fourier transform of the Green’s tensor, which we represent in a form convenient for constructing the
original:

02 b6 &é b,
3 k3" kj kj 3 ] _ -1
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Here Mj= c/ ¢ is the Mach numbers which characterize the speed of the source relative to the speed of sound. The
components of the tensor contain the following functions

TafGh )=l £~ ME) =+ g+ A-ME) ™% k=012 @)

Note that the sign (1 — M% ) determines the type of the system and the form of the original of the functions (22).

3.2. Green's tensor for M<1
We will construct solutions of the Biot’s transport equations for subsonic speeds of movement of the transport load.
For c< min (¢;,¢,¢3), M <1 (j=1,3) we have elliptical system and

(23)

Tl () = g k= 1.2

X |+ [mPr2 + X2
2}(5) £ (% ,m}.)=(|X3|]H(| 3|+Jm/jr + 3) - fmJZ,,Z_pX%)/ALn (24)
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So, we have following fundamental solutions of Biot’s transport equations at subsonic speeds:

U= cng[@ ey 22 +x%)-1/2-
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For || X|| —o U = 0(| X| - 1). For the non-stationary case in 2 Dand 3 Dspaces, fundamental solutions of Biot’s equations
J

were constructed using the Fourier transform of generalized functions in [15, 19].

3.3. Solutions of Biot’s equations for any type of mass forces
A solution of Biot’s transport equations for any type of mass forces can be represented as a tensor-functional convolution

U= Uy ™ Gy (28)
Which for regular G, (x¢), has the following integral representation:
ufx) = U * 6(x) = [ zUyx=2)Gm)dy,dy,dys,  1j= 1,6 (29)

For singular mass forces, the convolution should be taken according to the definition of the convolution of generalized
functions. Substituting the obtained solution into Biot's law for stresses (4), we determine the stress state of the medium.

4. Computer implementation of Green's tensor in the case of subsonic speeds

The results of the computer implementation in the Mathcad are presented below. Figure 1 shows the displacements of
the solid component under the action of a load in the solid component, and Figure 2 shows the displacements of the fluid
component under the action of a load in the fluid.
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Fig. I: The movement of the solid components U,,,U,,, U,, under the action of load in the solid component
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Fig 2: The fluid components moving U,,,U,,, U,, under the action of load in the fluid
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The graphs of the medium displacements for different speeds of transport load, displacement vector fields of fluid and
solid skeleton are obtained. The influence of the speeds of movement of the load on the fluid and solid components of the
medium is investigated.

5. Conclusion

The Green's tensor of Biot’s transport equations for subsonic speeds of loads and solutions for any type of mass forces
have been constructed. The effect of transport load speed on the character of the stress-strain state of a two — component Biot
model has been analysed. The results of the investigations allow us to take into account not only the elastic parameters of the
underlying surface of vehicles, but also such important characteristics as porosity and water saturation.

Constructed Green's tensor can be used for solving on the basis of methods of boundary equations and boundary-element
boundary-value problems in a Biot model with cylindrical boundaries, on which traffic load move with different speeds.
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