Proceedings of the 11th World Congress on Mechanical, Chemical, and Material Engineering (MCM'25)

Paris, France - August, 2025 Paper No. MMME 114 DOI: 10.11159/mmme25.114

Risk Management for Sustainable Mining in Kazakhstan

Sergei Sabanov¹, Ruslana Korshunova¹

¹School of Mining and Geosciences, Nazarbayev University 53, Kabanbay batyr Ave., Astana, Kazakhstan sergei.sabanov@nu.edu.kz; ruslana.korshunova@nu.edu.kz

Extended Abstract

Risk management in sustainable mining practices is crucial for Kazakhstan, a country rich in mineral resources but facing significant environmental and social challenges. The mining sector is a cornerstone of Kazakhstan's economy, contributing substantially to GDP and employment. However, the environmental impacts of mining activities, including pollution and resource depletion, necessitate a robust risk management framework that aligns with sustainable development goals.

Kazakhstan's mining industry is currently undergoing a transformation aimed at enhancing sustainability through digitalization and advanced analytics. Uteshov et al. highlight that effective digitalization is essential for timely and sustainable technological modernization, which is critical for maintaining competitiveness and profitability in the mining sector [1]. This technological shift is necessary to address the environmental challenges posed by mining operations, as emphasized by Sikhimbayev et al., who discuss the need for improved management systems that minimize environmental impacts while ensuring social guarantees for personnel [2].

Environmental impact assessments (EIA) play a pivotal role in risk management for mining projects. Zarubin et al. propose a GIS software module specifically designed for optimizing EIA calculations in open-pit mining, which can significantly reduce negative environmental impacts [3]. This tool is particularly beneficial for small mining operators in Kazakhstan, who may lack access to comprehensive commercial software solutions. Furthermore, Baubekova et al. underscore the urgent need for monitoring environmental contamination by toxic trace elements, which has become a pressing issue in regions with intensive mining activities [4]. Effective EIA, coupled with continuous monitoring, can mitigate risks associated with environmental degradation and public health.

Water resource management is another critical aspect of sustainable mining in Kazakhstan. Atakhanova discusses the risks associated with mine water use, highlighting the need for regulatory frameworks that address the high resource intensity of mining operations [5]. The deterioration of surface and groundwater resources due to inefficient practices poses significant risks to both ecosystems and human health, necessitating a comprehensive approach to water management in the mining sector [6].

Health impacts of mining activities, particularly concerning uranium extraction, are significant. Adotey at al studied influence of heterogeneous (gas-solid) chemistry of atmospheric Cr in Astana city, Kazakhstan [7]. Bersimbaev and Bulgakova detail the health risks associated with radon and uranium exposure, which are prevalent in mining areas [8]. The historical context of uranium mining in Kazakhstan necessitates a focus on remediation and health risk management as part of the broader sustainability agenda.

In conclusion, effective risk management for sustainable mining in Kazakhstan requires an integrated approach that encompasses technological innovation, rigorous environmental assessments, and proactive health and water resource management. By adopting these strategies, Kazakhstan can enhance the sustainability of its mining sector while addressing the environmental and social challenges it faces.

References

[1] E. Uteshov, D. Galiyev, S. Galiyev, Kanay Rysbekov, Dilda Nauryzbayeva. 2021. Potential for increasing the efficiency of design processes for mining the solid mineral deposits based on digitalization and advanced analytics. Mining of Mineral Deposit, 2021 15(2):102-110 https://doi.org/10.33271/mining15.02.102

- [2] M. Sikhimbayev, Zh. Shugaipova, Ye. Orynbassarova &b. Dzhazykbaeva (2019). Readiness for changes among managers of mining and metallurgy industry: a case of Kazakhstan. Economic Annals-XXI, 177(5-6), 101-113. doi: https://doi.org/10.21003/ea.V177-09
- [3] M. Zarubin, L.Statsenko, P. Spiridonov, V. Zarubina, N Melkoumian and O. Salykova (2021). A GIS Software Module for Environmental Impact Assessment of the Open Pit Mining Projects for Small Mining Operators in Kazakhstan. Sustainability 2021, 13(12), 6971; https://doi.org/10.3390/su13126971
- [4] A. Baubekova, A. Akindykova, A. Mamirova, C. Dumat & S. Jurjanz (2021). Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data. Environmental Science and Pollution Research, Volume 28, pages 43315–43328, (2021) https://doi.org/10.1007/s11356-021-14979-z
- [5] Z. Atakhanova, M. Meirambayeva and M. Baigaliyeva. Mine Water Use in Kazakhstan: Data Issues, Risks, and Regulation. Sustainability 2024, 16(6), 2456; https://doi.org/10.3390/su16062456
- [6] D. Adenova 1,D. Sarsekova, M. Absametov, Y. Murtazin, J. Sagin, L. Trushel and O. Miroshnichenko (2024). The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability. Sustainability 2024, 16(11), 4597; https://doi.org/10.3390/su16114597
- [7] Adotey, E.K., Balanay, M.P., Shah, D., Sabanov, S., Amouei Torkmahalleh, M. (2024). Heterogeneous (gas-solid) chemistry of atmospheric Cr: A case study of Astana, Kazakhstan. Environmental Pollution, 2024, 344, 123210 https://doi.org/10.1016/j.envpol.2023.123210
- [8] R. Bersimbaev & O. Bulgakova (2015). The health effects of radon and uranium on the population of Kazakhstan. Genes and Environment volume 37, Article number: 18 (2015) https://doi.org/10.1186/s41021-015-0019-3

This research was funded by Nazarbayev University Grant Programs: Research Grant #0122022FD4128