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Extended Abstract

Stainless steels (SS) are a group of steel alloys that contain at least 10.5% chromium, an element that significantly
enhances the material's resistance to corrosion in humid and aggressive environments. This high chromium content creates
a protective passive oxide layer on the material’s surface, which prevents further oxidation and corrosion, making stainless
steels highly suitable for use in various sectors, including the chemical, automotive, food processing, and construction
industries [1-3]. These alloys are classified as austenitic stainless steels (ASS) due to the presence of the austenite phase,
which has the face-centered cubic crystal structure of iron. This structure remains stable even at temperatures lower than
ambient, making these steels ideal for use in extreme conditions [4]. Among the many types of ASS, there are those that
contain niobium and tantalum. These elements serve as stabilizers in the alloy, improving its resistance to intergranular
corrosion, which typically occurs along the grain boundaries of metals when they are exposed to certain environmental
conditions or high temperatures. By stabilizing the grain boundaries, niobium and tantalum help ensure that the alloy
performs well in demanding environments where high temperatures and corrosive substances are present, making it ideal
for applications in industries like power generation and chemical processing [5-8]. The hot or cold rolling of this material
enables its hardening by deforming its crystal structure. Additionally, the cold rolling process can lead to the formation of
the martensitic phase, which further enhances the material’s hardness and strength [9,10]. This makes this alloy particularly
useful in high-stress environments where materials must withstand mechanical deformation without failure.

Due to these excellent mechanical and corrosion-resistant properties, this alloy is widely used in heat exchangers,
boilers, and other components of high-temperature systems [11]. These applications require materials that not only resist
corrosion but also maintain their structural integrity at elevated temperatures. Therefore, it is essential to understand the
thermophysical properties of this alloy in order to optimize its performance and predict how it will behave under different
operating conditions.

The objective of this study was to analyze the influence of different levels of cold work hardening on the
microstructure and thermophysical properties of ASS. To achieve this, the material was subjected to various levels of cold
work by reducing its thickness. This allowed for the assessment of how mechanical deformation at different intensities
affects the material’s structure and properties. The crystalline structure of the alloy was determined using X-ray diffraction
(XRD) while optical microscopy was employed to study its microstructure. Additionally, differential scanning calorimetry
(DSC) was used to determine the melting temperature and specific heat. The thermal diffusivity was measured using the
laser flash method, and the coefficient of thermal expansion using a dilatometer. Finally, the influence of temperature on
the material’s microstructure was analyzed by conducting additional microstructural tests after subjecting the samples to
thermophysical experiments. This allowed for a comprehensive evaluation of how elevated temperatures might affect the
material’s performance and longevity in real-world applications.
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