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Extended Abstract 
 Herein, we consider isothermal, incompressible flow of two immiscible fluids with different densities and viscosities. 

Numerical simulation of the phase field model for such fluids has become popular and important in the last decade. A 

frequently used model is based on the Cahn-Hilliard system coupled with the Navier-Stokes equation, and broadly there are 

two branches of this model depending on the definition of mean velocity of two fluids. Lowengrub et al. [1] suggested a 

thermodynamically consistent model by introducing a mass-averaged velocity. However, with this definition the velocity 

field is non-solenoidal, and it leads to a considerable difficulty in numerical computation due to complicated coupling 

between the Cahn-Hilliard and Navier-Stokes equations. On the other hand, by adopting the definition of volume-averaged 

velocity with the assumption of incompressibility, the velocity field can be divergence-free. Several models with the 

solenoidal velocity field are proposed with different expression for the effect of density and viscosity differences (see for 

example [2-5]), and corresponding discretization schemes are also presented. The advection term in the Cahn-Hilliard 

equation is discretized by the finite element method with Muramn and Resetarinera schemes in [2] and by an upwinding 

finite volume scheme in [3]. Shen et al. [4] compared the formulations with the gauge-Uzawa scheme and the pressure-

stabilization scheme for large density ratio. 

 The objective of this study is to present the numerical scheme with the least-squares spectral element method (LS-

SEM) to solve such phase field model. As oppose to other numerical methods, the least squares method does not require any 

special treatment for handling the convection term in the Cahn-Hilliard and Navier-Stokes equations. The fourth-order Cahn-

Hilliard equation can be split into two second-order partial differential equations by introducing the chemical potential as an 

auxiliary variable, and in this study the global differentiability of the set of these two equations is satisfied by approximating 

the solution with C1 Hermite polynomial functions in each element. A space-time coupled formulation with a time-stepping 

procedure is adopted for stability and accuracy of the solution in time. Parallelization of the code is necessary to describe the 

complicated topological changes on the interface onto sufficiently refined grids, and the system is solved by an element-by-

element conjugate gradient method. 

 The falling droplet example is addressed to point out the role played by the density and viscosity ratio of the two fluids. 

Three quantities are selected to investigate the effects of density ratio λρ = ρvap/ρliq and viscosity ratio λμ = μvap/μliq: the center 

of mass, falling velocity of mass center, and the circularity defined as a ratio of perimeter of circle to perimeter of droplet 

[5], and they are presented in Fig. 1-2. The droplet shapes when their center of mass pass y = 0.5 are presented in Fig. 3. The 

reference case with λρ = 0.1 and λμ = 0.1 shows a droplet reaches the terminal velocity around t = 0.5 s while it has a stable 

ellipsoidal shape. Droplets with the same viscosity but lower density ratio, λρ = 0.01 and 0.001, maintain circular shape and 

have linearly increasing velocity until they arrive at the bottom of domain. For the viscosity ratio study case, a droplet with 

higher viscosity ratio λμ = 1.0 develops a dimple at the top, while a droplet with lower viscosity ratio λμ = 0.01 has similar 

deformation rate with the reference droplet. The horizontally stretched shape of λμ = 1.0 leads to a drastic decrease of velocity 

after 0.4 s and lower terminal velocity than the reference case.  
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Fig. 1: (a) center of mass, (b) circularity, and (c) falling velocity depending on λρ with λμ = 0.1. 

 

 
Fig. 2: (a) center of mass, (b) circularity, and (c) falling velocity depending on λμ with λρ = 0.1. 

 

 
Fig. 3: Droplet shape when the center of mass is around y = 0.5 (a) λμ = 0.1, (b) λρ = 0.1. 
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