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Abstract – For this study, we developed a two-dimensional high order finite volume method code to solve inviscid compressible flows. 

In particular, the central essentially non-oscillatory (CENO) scheme improves spatial reconstruction, and the Runge-Kutta 4th order 

scheme enhances temporal accuracy. The CENO scheme provides a smoothness indicator that dictates whether a cell is under-resolved. 

One can evaluate this indicator either with the first or second layer of each cell’s neighbours, where it is applicable. For under-resolved 

cells, the reconstruction switches to limited second order instead of high order. We solved the shock tube in terms of accuracy and 

computational time for different spatial high order reconstructions. Results showed that for problems which present discontinuities, the 

usage of high order schemes to enhance spatial reconstruction does not improve accuracy as expected. Furthermore, the presence of 

discontinuities effects also the order of convergence of the solver. Specifically the order of convergence for all the studied spatial 

reconstructions is always as first order. 
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Nomenclature 

Symbol Description Symbol Description 

    

Roman  Greek  

A Matrix of geometrical coefficients 𝛼 Smoothness parameter 

#Cells Number of cells of the central stencil 𝛾 Ratio of specific heats 

𝐷 Unknown reconstruction coefficients 𝜌 Density 

#D Number of dimensions 𝛺 Volume 

𝐸 Total energy   

g Generic variable Vectors  

𝑔�̅� Cell average quantity of g 𝐹𝑐
⃗⃗  ⃗ Convective fluxes  

H Total Enthalpy �⃗⃗⃗�  Conservative variables  

k Order of accuracy   

M Number of neighbors Subscript  

N Number of unknown D min Minimum value 

Nf Number of faces of an element   

p Pressure Superscript  

pi CENO general index i General index 

S Smoothness indicator n Quantity value at time n 

Sc Threshold for S   

t Time Math Signs  

u Horizontal component of velocity vector ∆ Increment 

v Vertical component of velocity vector   

V Contravariant velocity   
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1. Introduction 
Modern engineering applications trust Computational Fluid Dynamics, CFD to obtain realistic solution of high complex 

problems. The advent of new technologies enhanced computer power that in turn boosted CFD application for such 

problems. Lewis Fry Richardson was one of the first pioneer who applied CFD to weather forecast, in 1922 [1]. Although 

he dramatically failed, he applied the same concepts we are adopting for modern CFD, such as approximation through finite 

differences and dividing the domain in cells. A few decades later, in 1960s, Harlow performed several two-dimensional CFD 

analyses taking into consideration the Euler equations for unsteady compressible flows [2]. Modern CFD applications 

consists of three-dimensional domains where the full Navier-Stokes equations model the fluid flow, such as blade cooling 

[3], lift-drag predictions [4], shock wave interactions [5], etc. 

To resolve a complex flow field accurately, one is obligated to mesh the domain densely. High order method in space 

and time have demonstrated the capabilities of resolving such flows with desired accuracy, by using coarser meshes [6]. In 

the literature, there are several schemes available, such as essentially non-oscillatory (ENO) schemes [7], Weighted ENO 

(WENO) schemes [7], Central ENO (CENO) schemes [8], discontinuous Galerkin (DG) schemes [9], and finite-difference 

(FD) schemes [9]. The main challenge of a high order scheme is the preservation of monotonicity during reconstruction 

stage. Within the ENO family, ENO, WENO, and CENO use a different technique to preserve monotonicity. In particular, 

ENO scheme is excluding from stencils those cells that contain a discontinuity, by reconstructing the solution on several 

stencils and choosing the one that provides the smoothest reconstruction [7]. In order to choose the most appropriate stencil 

for reconstruction, the WENO scheme applies a weighting factor to each stencil, which is depending upon the solution [7]. 

At last, the CENO scheme is using a central stencil to reconstruct the solution, but the order of accuracy is reduced to limited 

second order where the cells present a discontinuity of any kind [9]. To understand whether a cell is under resolved, we use 

a smoothness indicator [9]. Due to the high possibility of ENO and WENO schemes at selecting the proper stencil, their 

usage requires an extreme computational cost. In order to resolve this issue, the CENO scheme uses a fix central stencil. 

However, the lower computational load comes along with loss of uniform high accuracy within the whole domain. 

Researchers, such as Ivan et al. [9], proved that this local loss of accuracy is not nullifying the strength of high order accuracy 

in the whole domain; rather the convergence rate is still at the high order. 

The objective of this paper is to use CENO schemes to accurately solve the shock tube problem. We are going to analyse 

the effect that the smoothness indicator has on the solution, in terms of accuracy, and the enhancement of high order 

reconstruction for unsteady flows, by using Runge-Kutta 4th order scheme, a high order time-stepping scheme [10].  

 

2. Numerical Method 
This section introduces the numerical scheme we use for this study. The finite volume method is applied to discretise 

the Euler equations without external and body forces, as follows [11]. 

 

�⃗⃗⃗� 𝑛+1 = �⃗⃗⃗� 𝑛 −
∆𝑡

Ω
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𝑖
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The Advection Upstream Splitting Method +up (AUSM+up) [12] is the method that we used to evaluate convective 

fluxes in Eq. 2. In order to evaluate the summation in Eq. 1, the CENO scheme reconstructs the fluxes at each Gauss 

quadrature points of the cells’ interfaces [9].  To reduce error propagation between each time step, we use a Runge-Kutta 4th 

Kutta 4th order scheme [10].  

 
2.1. CENO Scheme 

To be able to reconstruct fluxes at each Gauss quadrature point with CENO scheme, we follow these three steps. Firstly, 

for each cell we perform a k-exact order reconstruction. Then, we evaluate the smoothness indicator for each cell. Finally, 

for the under resolved cells we use a limited second order reconstruction. The following formula performs the k-exact order 

reconstruction. 

𝑔𝑖
𝑘(𝑥, 𝑦) = ∑ ∑ (𝑥 − 𝑥𝑖)

𝑝1(𝑦 − 𝑦𝑖)
𝑝2

𝑘

𝑝2=0

𝑘

𝑝1=0

𝐷𝑝1𝑝2
, 𝑝1 + 𝑝2  ≤ 𝑘 (6) 

 

In Eq. 6 𝑔𝑖
𝑘 represents a generic variable to be reconstructed at a point(𝑥, 𝑦), cell centre has the following 

coordinates(𝑥𝑖, 𝑦𝑖), and 𝐷𝑝1𝑝2
 represents the unknown coefficients. The number N of unknown coefficients depends on the 

dimensions #𝐷 of the problem and the order of reconstruction 𝑘 required, as follows. 

 

𝑁 = 
1

#𝐷!
∏(𝑘 + 𝑛)

#𝐷

𝑛=1

 (7) 

 

The least square method evaluates the unknown coefficients for the given fix central stencil. The number of unknown 

N dictates the minimum number of cells inside the stencil. As can be seen from Fig. 1, for a 2D structured mesh, the single 

cell has 8 neighbours in the first layer (LV1) that are depicted in green, and 16 neighbours of second level (LV2) that are 

represented in red.  

 

 
Fig. 1: Neighbours for a quad cell in 2D. 

 

In order to let the least square problem have a proper amount of degree of freedom, we chose either 9 cells (LV1) or 25 

(LV2) cells for the central stencil, based on the N value (see Tab.1).  

 
Table 1: Number of cells that composes the central stencil. 

 

𝑘 𝑁 #Cells_min = 𝑁 ∙ 1.5 #Cells 

1 3 4.5 9 

2 6 9 9 

3 10 15 25 

4 15 22.5 25 
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To preserve the cell average quantity, 𝑔�̅� the CENO scheme enforces the least square reconstruction with the 

constraint. 

𝐷00 = 𝑔�̅� − ∑ ∑ 𝐷𝑝1𝑝2
(𝑥𝑝1𝑦𝑝2̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖

𝑘

𝑝2=0

𝑘

𝑝1=0

, 𝑝1 + 𝑝2  ≤ 𝑘 (8) 

 

The geometrical coefficient 𝑥𝑝1𝑦𝑝2̅̅ ̅̅ ̅̅ ̅̅ ̅ is evaluated as below. 

  

(𝑥𝑝1𝑦𝑝2̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖 =
1

Ω𝑖
∬ (𝑥 − 𝑥𝑖)

𝑝1(𝑦 − 𝑦𝑖)
𝑝2 𝑑𝐴

Ω𝑖

 (9) 

 

With the help of Equations 6, 8, and 9, the least square system takes the following form. 

 

[
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 (10) 

 

In Eq. 10, 𝑀 represents the number of neighbours of the cell 𝑖, 𝑁 represents the total amount of unknown coefficients 

minus one, and 𝐷00 is set as a constraint. The elements of matrix 𝐴 are calculated as stated in Reference [13].  

A smoothness indicator helps us decide whether a cell is under resolved. For CENO scheme, the following 

smoothness indicator is available in the literature [9, 13]. 

 

𝑆 =
𝛼

min (1 − 𝛼, 10−8)

#Cells − N

𝑁 − 1
 (11) 

 

In the previous equation, 𝛼 is determined as stated in [13]. One can evaluate the smoothness indicator with either just 

the first (green cells in Fig.1) or second layer (green and red cells in Fig.1) of cell’s neighbours. Afterwards, the smoothness 

parameter is compared to a cut-off value 𝑆𝑐, which is determined experimentally [13]. The range of variation of 𝑆𝑐 is 

between 2000 and 5000. Thus, any 𝑆 value smaller than 𝑆𝑐 determines the cell as under resolved. Finally, for under resolved 

cells a limited second order accurate reconstruction is performed, while a k-exact order reconstruction is adopted for the 

other cells. For this solver we use the Venkatakrishnan limiter [14] when reconstructing under resolved cells.  

The CENO reconstruction is enforced at the boundaries. We apply simple boundary condition, such as inlet or outlet 

conditions, via ghost cells. While we apply complex boundary conditions, such as symmetric walls, by including the 

constraints at each gauss quadrature point into the least square matrix 𝐴. In particular, we apply a weight of 103 to the 

constraints, and Eq. 8 is also included into matrix 𝐴 as weighted constraint [15].  

We use an external C++ library, Eigen3.3.5 [16], to evaluate the least square solutions via the subroutine Householder 

QR factorization (A.colPivHouseholderQr().solve(b)). 

             

3. Results 
The problem analysed here is the shock tube problem. Initially, the domain is separated in two equal regions by a 

membrane as in Fig. 2. The region at the left of the membrane has an initial condition of a density equal to 1 Kg/m3 and 
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a pressure equal to 1 Pa. The initial condition for the other region is of a density equal to 0.125 Kg/m3 and a pressure equal 

to 0.100 Pa.  

 

 

 
Fig. 2: Domain and initial conditions for the shock tube problem. 

 

Fig. 3 shows our results for a fifth order spatial accuracy in terms of density distribution along the tube for different 

mesh sizes, from 500 cells though 10000 cells. The results are matching with the analytical solution [17]. As expected, when 

the mesh size increases the FVM results show better agreement with the analytic solution.  

 
Fig. 3: Fourth order FVM results and the analytic solution in terms of density distribution along the tube.  

 

Fig. 4 shows the L2 Norm of error in density with respect to the number of cells and the execution time. We evaluated 

the L2 Norm of error for different orders of spatial reconstruction (first, second, third, fourth and fifth). The lines labelled as 

LV1 indicate that the results are obtained with a smoothness indicator that is calculated with the fist layer of cell’s neighbours. 

As can be seen from Fig.4, by switching from first order to second order of spatial reconstruction, there is a significant 

increase in the solution accuracy. However, the third, fourth and fifth order for the CENO scheme generate only a slightly 

increase of the accuracy. This discrepancy is due to the presence of discontinuities and strong shocks in the domain. For this 

problem, the presence of discontinuities also causes the order of convergence to be of first order for all k-exact order 

reconstruction, as shown in Fig. 4. The results obtained by evaluating the smoothness indicator only with first layer of cell’s 
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neighbours are less accurate than the corresponding results obtained by evaluating the smoothness indicator with the full 

central stencil.  

 
Fig. 4: Left and right figure show the L2 Norm of error in density with respect to execution time and mesh size, respectively for 

different order of spatial reconstructions.   

 

4. Conclusion 
For this study, we developed a two-dimensional high order FVM for inviscid compressible flows. The AUSM+up 

scheme evaluates the inviscid fluxes. The CENO scheme enhances the spatial accuracy, and the Runge-Kutta 4th scheme 

enforces the temporal accuracy. For the CENO high order scheme, we compute the smoothness indicator for each cell 

either with the first layer of neighbours or with the second layer of neighbours.  

The problem we solved is the shock tube. We obtained results for different orders of spatial reconstruction, and for 

the two different methods for the calculation of the smoothness indicator. Due to the presence of discontinuities in the 

domain, the order of convergence is of first order for all evaluated k-exact order reconstructions. The L2 Norm of error 

in density is showing that accuracy of second, third, fourth and fifth order schemes is slightly improving. However, 

switching from first order to second order highly improves the solution accuracy. The main difference between the two 

methods for computing the smoothness indicator is observed in the L2 Norm of error in density of the solution. 

Particularly by evaluating the smoothness indicator with the first layer of neighbours for fourth and fifth order of spatial 

accuracy, the L2 Norm of accuracy in density decreases to the one obtained with a second order spatial accuracy and  

the computational time decreases by nearly 0.82%. The results suggest that to obtain solutions to problems that present 

discontinuities, a second order CENO scheme is a good candidate both in terms of accuracy and in terms of 

computational time.  

In order to overcome those difficulties dictated by discontinuities, a possible solution is to couple CENO scheme 

with adaptive mesh refinement. Furthermore, the code can be extended to solve viscous compressible flows.  
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