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Extended Abstract 
Two-phase flows are characterized by the existence of an interface between the two phases. Therefore, numerical 

simulations of two-phase flows require high accuracy on the methods used to model the interface motion. Different families 

of methods exist to keep track of the interface, among them are Front Tracking [1], Volume Of Fluid [2] and Level Set 

methods [3]. We have developed a solver in the finite volume-based YALES2 framework [4] for numerical simulations of 

boiling. We use a Level Set method where the liquid-vapor interface is defined as the 0-level of the Signed Distance Function 

to the interface. The advantages of using the Level Set method compared to the Front Tracking and Volume of Fluid methods 

are the easier computation of the interface geometrical properties such as normal vector and curvature, and the ability to 

inherently handle interface topological changes such as coalescence and atomization. The Level Set field is continuous at 

the interface, thus no interface reconstruction procedure is needed after advection. The interface motion is then represented 

by the advection of the Level Set function by the fluid velocity. One notorious problem is that the advected Level Set function 

is no longer the signed distance function to the advected interface, and so a reinitialization step is needed. On structured 

cartesian grids, two well-known methods exist to reinitialize the signed distance function: the Fast Marching Method (FMM) 

[5] and Hamilton-Jacobi’s method (HJ) [6]. The FMM updates node lists to solve the Eikonal equation 1


 in both 

phases,   being the signed distance function, from the closest nodes to the interface to the farest nodes to the interface. HJ’s 

method solves an unsteady version of the Eikonal equation and does not require node list updates but requires a high-order 

scheme to compute 


. The classical versions of these methods require cartesian grids. On unstructured grids, one has to 

deal with the geometrical properties of the simplices to extend the FMM or HJ’s method. We base our work on the paper of 

Tanguy et al. [7] and aim at extending the method to unstructured grids. To this purpose, we use an extension of the FMM 

on triangles and tetrahedra by means of the MshDist library [8]. Once the signed distance function is reinitialized, the 

interface normal vector n


 and curvature   are respectively given by  


/n  and n

 . HJ’s method has also 

been extended to unstructured grids. The normal vector and curvature are computed with the same equations. HJ’s parallel 

algorithm is quite complex and will be addressed in an upcoming publication. We then use these geometrical properties of 

the interface to solve the incompressible Navier-Stokes equations fully coupled with the temperature advection-diffusion 

equation. The physical phenomenon of boiling induces discontinuities of different fields at the interface. We use the Ghost 

Fluid Method [9] to handle these discontinuities. The boiling phenomenon is taken into account at the interface by the mass 

transfer rate computed from the temperature fields on both sides of the interface. The mass transfer rate m is given by 

  vvapvapliqliq LnTnTm /:


   , where X  and XT   are respectively the thermal conductivity and the temperature 

of phase X , n


 the interface normal vector, and vL  the fluid latent heat. Because the knowledge of both the liquid and vapor 

thermal gradients is needed at the same location (the interface), we use Aslam’s extrapolation method to extend the 

temperature from one phase to the other in a narrow band approach [10]. The mass transfer rate, coupled with a density 

difference between the two phases, induces a discontinuity in the velocity field at the interface. In addition, the mass transfer 

rate also contributes to the pressure discontinuity at the interface (that depends also on the surface tension). Through these 

discontinuities, the Navier-Stokes equations are coupled with the mass transfer rate, leading to a two-way coupling of the 

momentum and thermal equations. We validate our method on unstructured grids against the analytical test case of a growing 

3D bubble in a quiescent superheated liquid where the mass transfer rate is computed at the interface from the temperature 
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fields [11]. Our numerical tests show the consistency of the methods. A better evaluation of the convergence order of 

the methodology is in progress. 
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