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Abstract - In this paper we discuss a gradient model as an extension of classical fluid mechanics with a higher order of spatial and time 

derivatives of velocities, pressure and acceleration.  Size effects, characterized by a mean free path, or the size of a microstructural lattice 

are captured by this model making feasible its applications in micro and nano-scales. One of the challenges of gradient models is to keep 

the number of additional constitutive parameters to a minimum. In contrast to the number of gradient models, requiring a large quantity 

of phenomenological constants, the present model requires a one additional constant, linked to the microscale characteristic length for 

the steady state flow, and two additional parameters in a non-steady counterpart. In order to account for the micro - structure the higher 

order continuum approximation is built based on a continualization strategy inside microstructural volume and a relating variational 

principle.  This model does not require introduction of a gyration vector, or coupled stresses, although these quantities could be deduced 

by coordinating with the micropolar or another gradient theory. The derived model exactly matches the non-steady linearized micropolar 

fluid flow model (small gyrations and velocity distributions), giving analytical interpretation of typical micropolar empirical coefficients 

in terms of a Knudsen number and a time characteristic constant.  

An asymptotic behaviour of a two - dimensional flow through a microchannel is investigated via rigorous singular perturbation 

analysis with respect to the small parameter, proportional to the Knudsen number. This small parameter is involved in both partial 

differential equations and the Maxwell’s slip boundary conditions. A singular perturbation technique reveals a thin boundary layer 

(Knudsen layer) region near the solid boundary described by the inner solution, whereas the outer solution relates to the classical Navier-

Stokes model. For the boundary layer solution is presented in an analytical form, whilst the outer region is modelling using analytical 

solution in case of a canonical, or a numerical solution for a non-canonical domain respectfully. Calculational results obtained compare 

favourably with the currently available experimental data. 
 

Keywords: Microscale, gradient model, Knudsen boundary layer, asymptotic analysis. 

 

Nomenclature 

𝜇 dynamic viscosity 

𝜚 fluid density 

Kn Knudsen number 

L hydraulic diameter 

l characteristic length in a microscale 

𝑝′ pressure gradient 

u axial velocity 

(x, y) Cartesian coordinates 

Δ Laplace operator 

𝑐𝑝 Maxwell’s slip coefficient 

 Subscripts: 

(𝑥, 𝑦) partial derivatives by relating coordinates 
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1. Introduction 
When mechanical, thermal, or electrical device is decreased in size to a sufficiently small level, its characteristics 

become significantly different from their counterparts in a macroscale. Microscale effects become important, when the mean 

free path of the energy carrier becomes comparable to the characteristic length of the object. In such scale the continuum 

approach based on a heuristic principle of continuity is no longer valid. Different models of a non-classical mechanics and 

physics have been introduced using different names for the generalized continuum: Cosserat, gradient, nonlocal, 

nonsymmetric, microstructure, micropolar, couple stress, multipolar, micromorphic, multiscale and others. A survey of 

different non-classical theories can be found in [1-6]. All these models include the higher order derivatives in mathematical 

formulations and additional empirical constants, whose experimental verification meets certain difficulties. The higher order 

gradients introduce additional degrees of freedom allowing to continualize the discrete matter, representing better as a result 

the discrete microstructure. The higher order gradients provide also a regularization and smoothing of nonphysical 

singularities and discontinuities predicted by classical models of continuum.  

It is agreeable to differentiate flow conditions in microchannels based on a rarefaction effect characterized by the 

Knudsen number. In the free molecular flow conditions (Kn>10) the Boltzmann equations are solved using typical 

approaches as the lattice Boltzmann model, direct simulation Monte-Carlo method, molecular dynamics. A comprehensive 

review of relating approaches could be found in [7,8]. Within the Knudsen number range 0.1 < Kn < 10 a rarefied gas can 

be considered as a continuum - transition flow, which is neither a continuous medium nor a free -molecular flow. To model 

these flows, a number of generalized hydrodynamics models have been proposed. The family of Burnett models replaces 

Boltzmann kinetic equation by series of differential equations in a reduced space with respect to the finite number of moments 

of kinetic function distribution. However, attempts at solving the Burnett equations have uncovered many physical and 

numerical difficulties produced by the model. The trace of evolution of Burnett models and description of the progress made 

by recent developments could be found in [9].  

Within the range of 0.001 < Kn < 0.1 the micro fluid flow is often characterized as a slip flow [7, 8, 10]. Typical 

engineering analyses of fluid flows in microchannels and micromachined fluid systems are based on a simplified approach 

accounting for the slip flow at the boundary within the frame of classical Navier-Stokes model. However, slip boundary 

conditions are not the only intrinsic property of a microscale. Physical phenomena arousing in microscale is associated with 

the microstructure and microrotation of fluid molecules, which should be accounted by the model to present an adequate 

description of microfluidics. The monographs [2,4] provide a unified picture of relating mathematical theory based on a 

micropolar model.  A number of publications indicate that flow analysis in microchannels, based on a gradient theory of 

micropolar fluids gives better predictions of experimental results [11-13].  Additionally, we note that the presence of 

roughness may prevent flow from the slip at the solid boundary [14]. In this case application of a simplified engineering 

microfluidic theory [10] completely ignores microstructure making no difference to the application of the classical Navier-

Stokes model to microscale. On a contrary, gradient models result in a correction for classical macro fluid predictions of a 

flow rate, average velocity, Darcy friction factor and pressure distribution regardless of a roughness effect on a boundary 

conditions at microscale.  

The demarcation line between application to microflows of gradient models versus classical Navier-Stokes model, 

supplemented by slip conditions, is not clearly defined. In [15, 16] the comparative results are presented for a one – 

dimensional case of a pressure driven flow for the wide range of Knudsen numbers. The present work extends 

application of the developed gradient model to the two-dimensional case with a following comparison of both 

approaches. An asymptotic behaviour of a two - dimensional flow through a microchannel is investigated via rigorous 

singular perturbation analysis with respect to the small parameter, proportional to the Knudsen number. This small 

parameter is involved in both partial differential equations and the Maxwell’s slip boundary conditions. A singular 

perturbation technique reveals a thin boundary layer (Knudsen layer) region near the solid boundary as an inner solution, 

whereas the outer solution satisfies to the classical Navier-Stokes equations. The boundary layer solution is presented 

in an analytical form, whereas the outer region is modelled using analytical or numerical solutions for the canonical or 

non-canonical domains respectfully. Calculational results obtained compare favourably with the currently available 

experimental data. 
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2. Fluid flow in microscale 
Consider pressure driven steady state isothermal flow in a cylindrical microchannel of an arbitrary shape.  The governing 

equation expresses the momentum balance, which is in a stationery condition reads [14] (u – axial component of the flow 

velocity) 

 

𝜀2Δv − v +
𝑝′

𝜇
= 0, 

(1a) 

Δu = v,              𝜀 =
𝑙

√6
= 𝐾𝑛

L

√6
 (1b) 

 

With application to the rectangular cross section −𝑎 < 𝑥 < 𝑎, −𝑏 < 𝑦 < 𝑏,, the low order boundary conditions are:  

 

𝑢𝑥|𝑥=0 = 0,             𝑢𝑦|𝑦=0 = 0           (2a) 

  ( 𝑢 + 𝜀1

𝜕𝑢

𝜕𝑥
) |𝑥=𝑎 = 0,         ( 𝑢 + 𝜀1

𝜕𝑢

𝜕𝑦
) |𝑦=𝑏 = 0,         𝜀1 = 𝜎𝑝𝑙 = 𝐾𝑛 ∗ 𝜎𝑝𝐿 

 

(2b) 

 

whilst the higher order boundary layer related conditions, read 

 

v𝑥|𝑥=0 = 0,             v𝑦|𝑦=0 = 0           (3a) 

v|𝑥=𝑎 = 0,             v|𝑦=𝑏 = 0           (3b) 

 

Conditions (2a) are the symmetry conditions, and (2b) are the 1st order Maxwell slip boundary conditions at the liquid 

-solid interphase. The additional higher order conditions pertain to symmetry at x=0 and y=0, (3a), and to the boundary layer 

conditions (3b) at the solid liquid interphase.  

The difficulty of a multidimensional problem (1)-(3) precludes from solving it exactly. However, the presence of a small 

parameter (squared Knudsen number) indicates existence of a thin boundary layer region, opening up a possibility to use a 

simplified model.  The basic tool explored in this section is similar to the one used in Prandtl’s boundary layer theory, where 

the flow around an airfoil is treated as inviscid far away from the wall, but viscous in its proximity. The present approach 

identifies the core flow by using classical Navier-Stokes model with the following boundary layer correction in a close 

vicinity to the wall. 

A two - scale asymptotic expansion is defined as the following  

 

v(𝑥, 𝑦) =
𝑝′

𝜇
+ 𝑈(

𝑥−𝑎

𝜀
, 𝑦 ) + 𝑉(𝑥,

𝑦−𝑏

𝜀
) 

(4) 

 

where the boundary layers coordinates are introduced 𝑋 =
𝑥−𝑎

𝜀
, 𝑌 =

𝑦−𝑏

𝜀
  in the vicinities to the edges  𝑥 = 𝑎 and 𝑦 = 𝑏 

accordingly. Introducing (4) into (1a) obtain  

 

𝜀2Δv − v +
𝑝′

𝜇
= ( 𝑈𝑋𝑋 + 𝜀2𝑉𝑌𝑌) + ( 𝜀2𝑈𝑋𝑋 + 𝑉𝑌𝑌) − (

𝑝′

𝜇
+ 𝑈 + 𝑉)+ 

𝑝′

𝜇
= 0 

 

(5) 

 

The leading order equations for the boundary layers 

 

𝑈𝑋𝑋 − 𝑈 = 0,              𝑉𝑌𝑌 − 𝑉 = 0 (6) 
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identify solution exponentially decaying away from the walls, 𝑈~𝑒
𝑥−𝑎

𝜀  , 𝑉~𝑒
𝑦−𝑏

𝜀 . As an outcome, the leading order solution 

(39) satisfying boundary conditions (38) reads 

 

v(𝑥, 𝑦) =
𝑝′

𝜇
(1 − 𝑒

𝑥−𝑎
𝜀 − 𝑒

𝑦−𝑏
𝜀 ) 

(7) 

 

The presented asymptotic solution (42) is valid under the assumption that the boundary of a domain is a smooth curve. 

In case of a boundary, contained corner points, the solution (42) should be supplemented by the corner boundary function 

[23], dying rapidly away from the point x=a, y=b.  Considering geometry where the area, relating to the corner boundary 

layer is negligible compared to the total area occupied by the edge boundary layer, the local corner effect can be neglected. 

To find velocity distribution u(𝑥, 𝑦) consider the Poisson equation (36b). We are looking for the solution as an 

expansion by a complete set of eigenfunctions using the generalized double Fourie series 

 

𝑢(𝑥, 𝑦) = ∑ ∑ 𝐴𝑚𝑛𝜑𝑚(𝑥)𝜓𝑛(𝑦)

∞

𝑛=1

∞

𝑚=1

 

(8) 

where 

 

𝜑𝑚,𝑥𝑥 − 𝜑𝑚 = 0,     𝜑𝑚,𝑥(0) = 𝜑𝑚(𝑎) + 𝜀1𝜑𝑚,𝑥(𝑎) = 0 (9a) 

𝜓𝑛,𝑦𝑦 − 𝜓𝑛 = 0,     𝜓𝑛,𝑦(0) = 𝜓𝑛(𝑏) + 𝜀1𝜓𝑛,𝑦(𝑏) = 0 (9b) 

 

The solution of (9) yields 𝜑𝑚(𝑥) = cos(𝜆𝑚𝑥) , 𝜓𝑛(𝑦) = cos(𝜆𝑛𝑦), satisfying slip boundary  conditions, where the 

eigenvalues are the roots of the following transcendental equations 

 

tan(𝜆𝑚𝑎) = (𝜀1𝜆𝑚)−1,                tan(𝜆𝑛𝑏) = (𝜀1𝜆𝑛)−1 (10) 

 

To find unknown coefficients 𝐴𝑚𝑛, we plug expansion (43) into the equation (36b), forming inner product with each of 

the elements of the set {𝜑𝑚(𝑥)𝜓𝑛(𝑦)}.  Carrying out the leading order approximation terms, arrive 

 

𝐴𝑚𝑛 = −
4𝑝′

𝜇𝑎𝑏̅̅ ̅

sin(𝜆𝑚𝑎) sin (𝜆𝑛𝑏)

𝜆𝑚𝜆𝑛(𝜆𝑚
2 + 𝜆𝑛

2 )
[1 − 𝜀2(𝜆𝑚

2 + 𝜆𝑛
2 )] + 𝑂 (𝜀4) 

 

𝑎̅ = 𝑎 +
sin(2𝜆𝑚𝑎)

2𝜆𝑚
,              𝑏̅ = 𝑏 +

sin(2𝜆𝑛𝑏)

2𝜆𝑛
 

 

 

 

(11) 

 

The presented solution (8), (11) is a superposition of the classical Poiseuille solution, following from the above at 𝜀 =
𝜀1 = 0, and its correction, affected by the Knudsen boundary layer. We can simplify the procedure of finding the roots of 

transcendental equations (10) by the substituting (10) with its asymptotic expansion in terms of a small parameter 𝜀1. When 

𝜀1 = 0 (10) reduces to tan(𝜆𝑚𝑎) = ∞, tan(𝜆𝑛𝑏) = ∞, whose roots are 𝜆𝑚0𝑎 = (𝑚 − 0.5)𝜋, 𝜆𝑛0𝑎 = (𝑛 − 0.5)𝜋. If 𝜀1 is 

small, but finite, we expect roots 𝜆𝑚 and 𝜆𝑛 to deviate slightly from 𝜆𝑚0 and 𝜆𝑛0. In this case we assume that the roots have 

an expansion 𝜆𝑚 = 𝜆𝑚0 + 𝜀1Δ𝜆𝑚 + ⋯,   𝜆𝑛 = 𝜆𝑛0 + 𝜀1Δ𝜆𝑛 + ⋯. By substituting the assumed expansion into the 

transcendental equation (45), and neglecting all quadratic and higher order terms of 𝜀1, obtain 
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𝜆𝑚 = (1 − 𝜀1)
(2𝑚 − 1)𝜋

2𝑎
,   𝜆𝑛 = (1 − 𝜀1)

(2𝑛 − 1)𝜋

2𝑏
 

 

(12) 

 

3. Results 

Two- dimensional solutions in Cartesian coordinates were obtained using trigonometric expansion (8) with the 

coefficients calculated according to (11). It was sufficient to use 10 terms of the expansion (8)  in each direction due to its 

fast convergence. The first ten eigenvalues 𝜆𝑚𝑎, obtained by solving the transcendental equation (45) for 𝐾𝑛 = 0.1 are 

presented in the table below 

 
Table 1: Eigenvalues of equations (10) calculated for 𝐾𝑛 = 0.1. 

m 1 2 3 4 5 6 7 8 9 10 

𝝀𝒎𝒂 1.404 4.241 7.145 10.113 13.131 16.1835 19.257 22.348 25.449 28.558 

 
The experimental data from [11] along with predictions from the Poiseuille model gradient models for the channel 3000 

× 600 × 30 𝜇𝑚3 (L × 𝑊 × H) are presented In Figure 1. Square markers designate the testing data as the average data of 

three consecutive experimental runs. The gradient model at 𝐾𝑛 = 0.1 (solid line) predicts the experimental data better than 

the classical Navier-Stokes theory (dash line). 

Figure 2 shows the experimental data from [11] compared to the predictions by the Navier-Stokes theory, micropolar 

and gradient models. The channel used to obtain experimental data, marked by squares, is 3000 × 600 × 30 𝜇𝑚3. 

Microchannels used to compare to micropolar theory are 10,000 × 60 × 25.4 𝜇𝑚3, and 11,700 × 80 × 20 𝜇𝑚3. The gradient 

model provides a good prediction of experimental data over the wide range of applied pressure drop and a flow range. 

 
Fig. 1: Comparison of the Navier-Stokes model, gradient model and the experimental data for water flow in the 

microchannel 3000 × 600 × 30 𝜇𝑚3 (L× 𝑊 ×H). 
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Fig. 2: Comparison of the experimental data with the Navier-Stokes model, gradient model and the micropolar model 

for water flow in three microchannels. 

 
4. Conclusion 

An asymptotic behaviour of a two - dimensional flow through a microchannel is investigated via rigorous singular 

perturbation analysis with respect to the small parameter, proportional to the Knudsen number. A singular perturbation 

technique reveals a thin boundary layer (Knudsen layer) region near the solid boundary described by the inner solution, 

whereas the outer solution relates to the classical Navier-Stokes model. Calculational results obtained compare favourably 

with the currently available experimental data. 
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