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Abstract - The artificial compressibility method is applied to simulate non-reactive and reactive flows with incompressible and infinite-

rate chemistry assumptions. To validate the implemented time-accurate approach, the resulting code is used to calculate three different 

flow regimes: an unsteady non-reactive flow past a circular cylinder, a steady diffusion Tsuji flame and an unsteady buoyant diffusion 

flame. As expected, the results evidence the strong dependence of the convergence rate to the artificial compressibility factor. They also 

show the ability of this approach to describe the circular cylinder wake unsteadiness as well as the flame shape of the steady diffusion 

flame. In return, the correct prediction of the low-frequency instability known to be featured by unsteady buoyant diffusion flames is 

presently out of reach of the present version of the methodology. 

 
Keywords: Inert wake, buoyant diffusion flame, Tsuji configuration, finite volume method. 

 

1. Introduction 
The artificial compressibility method is a well-established numerical approach introduced by Chorin [1] for solving the 

steady incompressible Navier-Stokes equations. In this method, the continuity equation is modified by the addition of a non-

stationary pressure term along with an artificial compressibility factor. With this, waves of finite speed are introduced to 

distribute the static pressure throughout the whole computational domain. The results are physically meaningful only when 

a steady-state solution is reached and the original continuity equation is recovered [2]. The ongoing popularity and success 

of the artificial compressibility method are mainly due to its simplicity and clear physical interpretation. 

To obtain a time-accurate solution, a dual time-step artificial compressibility technique can be employed [3, 4, 5, 6]. The 

equations are iteratively solved such that the velocity approaches the new value in time as its divergence approaches zero. 

Then, for each physical time step, the pressure field has to go through one complete steady-state iteration cycle. To satisfy the 

divergence-free constraint on the velocity, the same classical artificial compressibility relation in the continuity equation 

remains unchanged, but the physical time is introduced in the momentum equation. 

As far as reacting flows are concerned, the artificial compressibility method was extended so as to deal with steady (Bruel 

et al. [2]) and unsteady turbulent premixed flames (Corvellec et al. [5], Dourado et al. [6]) as well as laminar confined and 

unconfined diffusion flames (Fathi et al. [7], Bianchin et al. [8]). 

On the basis of the code developed by Bianchin et al. [8] to investigate steady Tsuji diffusion flames, the purpose of the 

present study is to develop a time-accurate version and test it on three different flow configurations: an unsteady non-reactive 

flow past a circular cylinder in a channel (Case A), steady Tsuji diffusion flames (Case B), and an unsteady buoyant diffusion 

flame (Case C). To the best of the authors’ knowledge, this is the first time the artificial compressibility method is applied 

to compute the whole buoyant Tsuji burner geometry (Case C). As a first step towards the full and more complex 

implementation of the strong density variations associated with reactive flows, the effects of the thermal expansion on the 

flow field are only taken into account, whenever relevant, to express the buoyant force present in Case C. In that case, an 

isobaric approximation for the equation of state is used to implement the temperature differential in the buoyant term, which 
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is not restricted to small density differences. Since the flow is considered bi-dimensional and the effect of the thermal 

expansion on the flow field is not considered ( ˆ ˆ 0 u ), where  ˆ ˆ ˆ,u vu  is the flow velocity vector, the sources of  vorticity 

ω̂ in the vorticity equation are absent i.e. ˆˆ ˆ( ) 0 ω u , ˆˆ ˆ( ) 0 ω u , ˆ ˆ ˆ( ) 0  g  and ˆ ˆˆ ˆ( ) 0p   , where p̂  is the 

pressure, ĝ  is the gravitational acceleration and ̂  is the density. Thus, it may be anticipated that the calculated vortices 

generated by the instability of the buoyant diffusion flame (Case C) will be simply convected to the flame tip and damped 

there by the viscous effects [9]. In the previous expressions and in the following sections, any quantity ̂  is dimensional 

whereas its dimensionless counterpart is written as .  

 

2. Numerical Treatment and the Artificial Compressibility Scheme 
The introduction of a non-stationary term in the continuity equation leads to the following generic form 

 
1 p    u     

(1) 

 

where   is the pseudo-time and   is the artificial compressibility factor. The dimensionless momentum equations are 

given by 
1 2( )t p Re
      u u uu u  (2) 

 

where t  is the physical time, and Re  the Reynolds number, 
t  and   are the physical and pseudo-time derivatives. 

The existence of the pseudo-wave propagation phenomenon associated with the solution of the above set of equations can be 

evidenced by writing them under a characteristics-like form (neglecting the viscous term and the physical time derivative 

and considering a one-dimensional configuration), namely 

 

u 1 u 1
(u ) 0

(u ) (u )

p p
c

c x c x 

      
       

        
 

(3) 

 

The artificial sound speed ,c  and the corresponding artificial Mach number ,M  are related to   by 

 

2

2

u u
u , 1

u
c M

c



    


 

(4) 

 

By the above equation, it is clear that M is always less than 1 for all 0  . The discretization of the time derivatives in 

the conservation equations, Eqs. (1) and (2), is expressed as 

 
1, 1 1, 1,

,
n n n

i jp p RHS           (5) 

1, 1 1, 1, 1,
,

n n n n n
i jRHS t               u u u u  (6) 

 

where superscripts n  and   refer to the iteration cycle in physical and pseudo-time, respectively.   is the pseudo-time 

step, t  is the physical time-step and RHS refers to the right-hand-side of Eqs. (1) and (2). The flow chart of the algorithm 

to solve Eqs. (5) and (6) is presented in Figure 1. To advance the solution by one physical time-step, the equations are 

iteratively solved such that 
1, 1n  

u approaches the new velocity 
1n

u as the divergence of 
1, 1n  

u approaches zero. For 

satisfying the divergence-free constraint, the maxRHS  of Eq. (5) is set to reach values below 
65.10  . In the momentum 

equations, the values of the residuals in the pseudo-time step are defined as 1, 1,
, ,( ) n n n

i j i jRes RHS t     u u u . A lower 
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limit is given in the literature for the value of  , but numerical experiments are required to obtain an optimal value. The 

choice of the physical time step t  is specific to the problem under consideration (steady flow, forced excitation or large 

vortical structures), but is generally much lower than  . The rate of convergence of the solution in the pseudo-time 

integration depends on   as well as the streamwise length L , of the flow geometry. The waves associated to the hyperbolic 

nature of the artificial compressibility based system of equations have to undergo at least a one round-trip propagation to 

distribute the pressure in order to converge to the steady-state solution in pseudo-time. Analyzing the pseudo-time needed for 

the pseudo-waves to travel downstream and back upstream, Chang and Kwak [10] introduced the number N of computational 

time-steps required to reach a converged solution in pseudo-time as 

 

1 2L
N



 





 

(7) 

 

In the present work, an explicit second-order Runge-Kutta Ralston’s method was adopted for the pseudo-time time 

integration due to its simplicity, robustness and low computational cost. The governing equations are discretized on a 

staggered grid by a cell-vertex finite-volume formulation using the quadratic upstream interpolation for convective kinetics 

(QUICK) scheme to guarantee stability, sensitivity to the flow direction and third-order truncation error. 

 

 
Fig. 1: Flow chart of the algorithm where maxt is the maximum physical time and q is the vector of variables u and p . 

 

3. Tests Cases 
3. 1.An Unsteady Flow around Circular Cylinder (Case A) 
3. 1. 1. Geometry 

The two-dimensional incompressible unsteady laminar flow around a cylinder with a circular cross section of diameter 

d̂  placed eccentrically in a channel of height ˆ ˆ4.1h d  is considered. This configuration corresponds to one of those used 

by Schafer and Turek [11] for a benchmark of different solution approaches for solving the incompressible Navier-Stokes 

equations. As shown in Fig. 2c., the distances between the cylinder center and the bottom and top walls are ˆ2.1d  and ˆ2 d , 

respectively. The Reynolds number is defined by ˆ ˆv̂ /bulkRe d  , where ̂  is the kinematic viscosity and v̂bulk  the bulk 

velocity. The case selected here corresponds to 100Re  . 

 
3. 1. 2. Governing Equations 
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An incompressible Newtonian fluid is considered for which the conservation equations of mass (artificial compressibility 

relation) and momentum are the Eqs. (1) and (2), respectively. Equations (1) and (2) are integrated with the following 

boundary conditions: on the top ˆˆ( / 2.1)x x d    and bottom ˆˆ( / 2)x x d   walls and at the cylinder surface 2 2 2( )r x y   

the no-slip condition is imposed for velocities. At the inlet section located at ˆˆ( / 4)y y d   , a parabolic profile is prescribed 

for the velocity streamwise component (with a maximum value max

3ˆˆ ˆ ˆ ˆv( / 2) v v
2

bulkx h   ) and the normal component is 

set to 0 . Finally, a zero pressure gradient is imposed normal to all boundaries. 

 
3. 1. 3. Results 

Among all the characteristics of this type of problem (lift, drag, and pressure coefficients), the correct prediction of the 

periodic vortex-shedding, illustrated by the isocontour of velocity in Fig. 2c, was the target chosen to validate the present 

solution approach. In particular, the Strouhal number is computed to measure the ability of the method to produce 

quantitatively accurate unsteady results. Figure 2a presents the time evolution of the non-dimensional normal component of 

the velocity at ( , ) ( 0.5,0.5)x y    observed when the periodic regime is established. For 100Re  , the experimentally 

obtained Strouhal number is 0.287 0.003St    [11].  

 

 
Fig. 2: Case A (Mesh size of 43 246 ): (a) Velocity history at ( , ) ( 0.5,0.5)x y   , (b) power spectrum for the vortex-shedding, and 

(c) snapshot of isocontour of velocity (× marker indicates the location at which the data in (a) is computed. 

 

The power spectrum of the fluctuations of the streamwise component of the velocity is shown in Fig. 2b. The numerically 

computed Strouhal number of St = 0.289 agrees well (error of 1.35%) with the experimentally obtained value. For the 

present case, Figure 3a shows, for a given physical time-step, an evolution of the maxima of the residuals of the RHS (Eq. 

(5)) during the pseudo-time iteration cycle. It can be seen that calculations for 40   become unstable and within 40  steps 

starts to diverge, whereas other cases converge to a stable solution. For low values of ,  it takes only 10  iterations for the 

solution to reach almost constant residual values but then, further iterations do not improve the solution and so the accuracy 

constraint cannot be met. The effect of the artificial compressibility factor   on the number of pseudo-time steps necessary 

to achieve convergence to the new physical time step after the snapshot (Fig. 2c) is illustrated in Fig. 3b where L  is defined 

as the channel length and 0.14  . The optimum value of 34opt   is higher than the expected value of 8opt   reported 

in the literature [10, 2]. By using Eq. (7), the dashed line in Fig. 3b represents the number of minimum time-steps to achieve 

convergence of the pseudo-time integration for each value of .  Considering the convergence criteria of maxRHS  , it is 

possible to see a good agreement between the computation iterations and the iterations described by Eq. (7) until opt , 

value beyond which the convergence rate begins to degrade gradually until the value 38   beyond which convergence is 

lost. 
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Fig. 3: Case A (Mesh size of 43 246 ): (a) Convergence history and (b) the influence of the artificial compressibility factor β 

on the number of time steps required to obtain a pseudo-time converged solution. 

 
3. 2. Steady (Case B) and Unsteady (Case C) Diffusion Flames 

3. 2. 1 Geometry 
Two different diffusion flames regimes are considered. 

 The first regime (Case B) is concerned with the flame stabilization over a cylindrical porous burner with radius r̂  inside a 

channel. The gaseous fuel is injected from the forward half part of the burner with velocity bû  into the incoming airflow of 

velocity airû . This configuration reproduces the experimental set-up of the Tsuji Burner, where the rear side of the burner 

surface was coated to avoid the ejection of fuel into the wake region [12]. In such a configuration characterized by a low 

incoming flow velocity, an envelope steady flame is found. 

 The second diffusion flame test case (Case C) introduces some modifications to the Tsuji burner configuration, i.e., fuel 

injection from the whole burner surface, buoyant force, no incoming airflow and no channel walls. These modifications 

enable the appearance of a long buoyant diffusion flame in the open air which exhibits a self-excited periodic movement that 

is often referred to as ‘puffing’. The low-frequency flame oscillation is used as a parameter to test the ability of the method 

to describe the flame unsteadiness [9]. 

 
3. 2. 2. Governing Equations 

Thermodynamic and transport coefficients, i.e. the specific heat at constant pressure ˆ
pc


, the viscosity ̂ , the thermal 

conductivity k̂  and the diffusion coefficient D̂ , are considered constant. In this analysis, both fuel and oxidant Lewis 

numbers are equal to unity. Also, an infinitely fast one-step chemical reaction is assumed i.e. 2F O (1 ) Ps s    (At 

stoichiometry, s mass of oxygen is consumed for each unit mass of fuel 𝐹 resulting in 1 + 𝑠 mass of products 𝑃). Thus, the 

temperature T  and the mass fraction fields iY  ( ,i O F ) are determined by two conserved scalars: the mixture fraction Z  

and the excess enthalpy H  [13, 14, 15]. The continuity equation is defined as Eq. (1) and the dimensionless conservation 

equations are 

 
2

t       E E u E C E F  (8) 

 

in which (u,v)u , (u,v, , )Z HE , 1 1 1 1( , , ),Re Re Pe Pe   C  and ( , ,0,0)x y gp p F   F . For Case C, the 

buoyant force gF  is considered to be dependent on the temperature as 2(1 1 / ) /gF T Fr  , in which b
ˆ ˆ ˆ( u / )Fr r g  is the 

Froude number and the equation of state 1/ T   is assumed, where 𝜌 is the density. In Eq. (8), the parameters in C  are the 

Reynolds and Péclet numbers defined as b
ˆˆ û /Re r   and b

ˆˆ û /Pe r   (with ˆ ˆˆ /   , ˆˆ ˆˆ/ pk c    , where �̂� is the 
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dynamic viscosity, �̂� thermal diffusivity, �̂�∞ thermal conductivity and ĝ  the gravitational acceleration), respectively, based 

on the burner properties: the fuel injection velocity bû  and the cylinder radius r̂ . 

The mixture fraction is expressed as 1F OZ S Y Y    and the excess enthalpy ( 1) / F OH S T Q Y Y    , in which 

ˆ ˆ/
bF OS sY Y


  and ˆˆ ˆˆ/

bF pQ Y Q c T
  , where ˆ

bFY  and ˆ
OY


 are the mass fraction of fuel at the burner injection surface and 

oxidant at the ambient, respectively, and 𝑄 is the heat of combustion. The dimensionless variables are defined as b
ˆ ˆ ˆ(u / )t t r

, ˆ ˆ/x x r , ˆ ˆ/y y r , b
ˆ ˆu u/ u , ˆ ˆv v/ ub , ˆ ˆ/T T T  and 2

b
ˆˆ ˆ/ up p  . 

The oxidant mass fraction is normalized according to ˆ ˆ/O O OY Y Y


  and the fuel mass fraction is defined as ˆ ˆ/
bF F FY Y Y

. Equations (1) and (8) are integrated with the following boundary conditions: 

On the symmetry axis ( 0)x  , xu 0x x x xv p Z H          ; at the burner boundary surface 2 2 2 )( 1r x y


   , 

u v 0nx y p      , 1
s n ZZ Pe Z S   , 1

s n HH Pe H S    (Robin’s like boundary type for Z  and H  ) where 

1
ss FZ S Y  , ( 1) /

ss s FH S T Q Y    and the subscript n  stands for the normal to the burner surface. The terms ZS  and 

HS  are the Z  and H  fluxes which are imposed at the burner injection surface 2 2 2 1r x y 


    as function of ˆ
bFY , ˆ

bT  

and ˆ
bu , namely 1ZS S   and ( 1) / 1H bS S T Q   . Note that 

sFY  and sT  are found as part of the solution of the problem 

and that for Case B, this holds only in the forward part of the cylinder. For Case B the boundary conditions at the inlet 

( 7.5)y    are v 1 , u 0y p Z     and ( 1) / OH S T Q Y   . At the outlet ( 13)y  , they are 

u v 0y y y y yp Z H           and at the channel wall ( 4)x  , they read u v 0x x xp Z H        . For Case C, the 

boundary conditions at the ambient atmosphere ( 40x   and 20 and 60)y    are u v 0n n n p Z H H         . 

According to the definition of the mixture fraction function Z , the flame position ( , )f fx y  is given by the isoline ( , ) 1Z x y   

where the flame temperature fT  is determined by ( , ) ( 1) /f f fH x y S T Q  . 

 
3.2.3 Results 

The steady diffusion flame (Case B) results are presented in Fig. 4 for different values of fuel-ejection rate fw  and airû

, in which 0.5
b air

ˆ ˆ(u / u )( / 2)fw Re  . This figure depicts the temperature profile along the forward stagnation streamline. 

 

 
Fig. 4: Case B (Mesh size of 82 446 ): (a) Temperature distribution through the flame front of a Tsuji burner with 38Re  , 

2.6Fr  , ˆ 0.02r m , airû 1.15 /m s , and 0.318fw   and (b) streamlines and flame shape with 18Re  , 1.95Fr  , ˆ 0.015r m , 

airû 0.75 /m s , and 0.5fw  . The continuous line and its corresponding circles are the numerical result of the current study, the 

dashed line and its corresponding squares are the numerical results of [16], and the dash-dot line and its corresponding triangles are the 

experimental measurements of [17]. 
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Fig. 4a compares the predictions obtained in this study to the numerical finite-rate chemistry and experimental results 

of Tsa and Chen [16] and Dreier et al. [17], respectively. The presented infinite-rate combustion model reproduces the data 

measured in both numerical and experimental studies, except in a small, but important, region around the maximum 

temperature. The profiles show that, for this study, the maximum temperature is approximately 2200 K  (adiabatic flame 

temperature for methane) with a sharp temperature profile, while it is about 1900 K  in the experimental study with a rounded 

distribution. This is due to the limitation of infinite-rate chemistry to describe the coexistence of reactants in the reaction 

layer that is approximated as a flame-sheet, i.e., the reactants must reach the flame in stoichiometric proportions. Figure 4b 

directly compares the flame-sheet obtained in this study with the flame boundary computed from fuel reaction-rate contours 

by Tsa and Chen [16]. The flame-sheet shape obtained is similar to that given by the reaction-rate contours of the finite-rate 

computation, except in the wake distant from the cylindrical burner, at which the recirculation zone is affected by the thermal 

expansion. 

 

 
Fig. 5: Case C (Mesh size of 82 446 ): Mass fraction contours at several times with 40Re   and 0.8Fr  .( )a 3t  , ( )b

6t  , ( )c 9t  , ( )d  12t  , (e) 15t  , (f) 18t  , (g) 21t  , (h) 24t  , (i) 27t  , (j) 30t  , (l) 33t   and (m) 90t  . Lines 

represent 10 contours between ˆ
bFY  (dashed line) and ˆ

OY


 (continuous line). The contours represent the dimensionless vorticity defined 

as v ux y    . The gray area represents the cylindrical burner. 

 
The simulation of Case C proves to be the most challenging of all. Indeed, such a low Froude diffusion flame is known to 

feature a self-sustained cyclic buoyancy driven puffing regime. The results obtained are illustrated by Figure 5 which displays 

the mass fraction isocontours and vorticity contours. Starting from the initial conditions, the flow field is experiencing: 
 

 A transient phase ( 0 30t  ) characterized by the generation of a finite number of vortical tubular structures which are 

growing while being convected upwards (See in Fig. 5b to Fig. 5j, the bulged and rolled contour regions). These vortices are 

generated by buoyancy-driven shear flow, close to  the burner, when the flame is progressively adapting its shape from the 

initial condition. The instability stops as soon as the last generated vortex structures leaves the computational domain (Fig. 

5j). 

 

 A (non-physical) steady state ( 30t  ) characterized by the absence of any puffing and related vortical structures. 

 
Here, it can be guessed that due to the absence of density gradient related vorticity sources (constant density hypothesis) 

and vortex stretching mechanism (two-dimensional flow), the dynamics of the flow leading to the puffing regime cannot be 

sustained beyond the observed transient period. 

 

4. Conclusion 
This work investigates the implementation of the unsteady artificial compressibility approach to simulate non-reacting 

and reacting flow fields in the limit of a zero Mach number. The resulting time-accurate scheme has been tested in three 

cases: unsteady non-reactive flow past a circular cylinder, steady Tsuji diffusion flame, and unsteady buoyant diffusion 

flame. The flow past a circular cylinder case has been chosen to put into evidence the basic properties of the implemented 

time-accurate approach, such as the ability to describe unsteady non-reactive flows and its convergence rate. An analysis of 
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the influence of the artificial compressibility factor on the convergence rate has been carried out. The results showed that the 

stability of the numerical code is highly dependent on the value of the artificial compressibility factor and the computed 

number of time-steps required to reach convergence in pseudo-time agrees very well with the expression presented by Chang 

and Kwak [10]. A comparison with experimental and numerical results was carried out for the steady diffusion flame case. 

The simulated temperature profile and flame shapes are in good agreement with those reported in the literature, except in the 

region around the maximum temperature, where the reaction layer is not well described certainly because of the infinite-rate 

chemistry considered. The third case investigated the influence of the hypothesis of constant-density flow in a buoyant 

diffusion flame. The results showed that the low-frequency instability generated by the displacement of the flame’s initial 

condition was damped and led ultimately to a non-physical stationary diffusion flame. This is tentatively attributed to the 

absence of vorticity source terms related to the underlying constant density assumption. Hence, the full implementation of 

variable density and finite-rate chemistry will be the natural next step to be addressed in order to refine the description of 

unsteady buoyant diffusion flames through an artificial compressibility based method of solution. 
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