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Abstract - Solving the Boundary Layer Equations is a challenge, even more so for complex geometries. This requires resolution of the 

drag inducing layer immediately adjacent to the solid surface, which is numerically and computationally intensive. Finite Difference 

schemes, though accurate, are better suited for rectilinear grids. The present work applies a unique approximation to solve the Boundary 

Layer Equations over a curved airfoil, approximating the geometry by linear splines, and sequentially applying the inclined flat plate 

solution over each individual section. The lift coefficient thus obtained for a NACA 0005 airfoil is compared with established values, for 

different angles of attack. 
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1. Introduction 
Design and development of airfoils has always been a critical operation for the aviation industry. Aerodynamic analysis 

for airfoils, prior to the 1940s, was limited to 2D analytical methods using conformal transformations about a cylinder [1]. 

The earliest numerical methods are Finite Difference Schemes, pioneered by Richardson [2], and other potential flow based 

techniques. Naturally, the solutions obtained and the allowed complexity of the geometries to be optimised depended heavily 

on the computing power available. In parallel, the airfoils used in practice were of growing complexity and constantly 

evolved. In the 1930s, the National Advisory Committee for Aeronautics conducted studies on ’families’ of foils and created 

the four-digit and five-digit series. Airfoil design finally moved from a manual, iterative procedure to mathematically precise 

analytical methods around the same time. NACA has since released multiple series of foils, each with its own characteristics. 

This study was further developed by Jacobs, who based the development of various profiles using pressure distribution 

arising from the boundary layer enveloping the foil. This kind of precision is fairly ubiquitous today, indicating the 

importance of the developing boundary layers [3]. First studied by Prandtl, Blasius and von Karmann [4], boundary layers 

indicate the region through which viscous effects are to be modelled. They were first solved analytically, and then numerically 

by the 1950s. The methods employed today rarely use the quintessential difference schemes, and eschew them in favour of 

more robust methods that can work with complex geometries faster. An important class of methods are the Panel methods, 

first outlined by Hess and Smith, 1967 [5]. These methods incorporate curved geometries using panels over the surface more 

easily than difference schemes, and are often faster. These methods have been extensively studied and developed over the 

years, growing in complexity, often using multi-order methods. As a tangent, this work considers a novel extension to the 

prototypical flat plate solution to solve for the steady state boundary layer of a symmetric NACA airfoil. The curved geometry 

of the airfoil is approximated as a series of inclined flat plates. Then, the boundary layer of each such plate is solved 

sequentially, where the velocity profile at the trailing edge of one plate is repurposed into the initial velocities for the next 

plate. The resulting velocity profiles give us the developed boundary layer. 

The rest of the paper is organised as follows. The following sections detail the flat plate boundary layer, and then follow 

into the inclined flat plate problem. The latter is then extended to curved geometries, which we test on symmetric four-digit 

airfoils. The approximate solutions for the velocity fields are then used to compute the coefficient of lift, which is used to 

verify that the method does indeed model the boundary layer over the foil. 

 

2. Theory 
This section develops the flat plate boundary layer solution to solve the inclined flat plate problem. This solution is then 

used to construct the new method, which is used to solve boundary layer flow over curved geometries. 
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2. 1. Boundary layer equations 

The governing equations for this flow are derived from the Navier-Stokes equations, which are as follows. 

 

 

(1) 

                                                                 

where u is the horizontal component of the velocity field, and v is the vertical. Note that these are with respect to the 

global coordinate axes. When solving over each region, these will be resolved along appropriately inclined axes, and the 

meaning will be clear from context. u is the velocity field, with the aforementioned components. Lastly, ν is the kinematic 

viscosity of the fluid; in this case, air.  

We are able to rewrite Eqn. (1) follows: 
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subject to the following boundary conditions: 

 

  

(3)  

 
 

We are also specifying mass conservation throughout as follows. 

 

  

(4) 

 
 
2. 2. Boundary Layer over a Flat Plate 

Consider a horizontal stream with velocity  incident on a flat plate of negligible thickness as shown. Naturally, we 

are subject to the no-slip condition at the bottom of the plate, and we assume that we reach the free-stream velocity  

beyond the layer. These are essentially the conditions outlined in Eqn. 4. 

Now, we can say that the problem is well posed. We can now begin discretising Eqn. 3. With help from (Blottner, 1970) 

[6], we use the following derivative approximations: 

 

 

 

 

(5) 

 

 
 

Here,  denotes the steady flow velocity component at the  node. In accordance with the literature in Finite 

Difference Methods, each node represents a point in the domain where the velocity field is resolved. Naturally,  refers 

to the  node i.e. the succeeding node along the (local) x-axis, and  refers to the  node i.e. 

the succeeding node along the (local) y-axis. Note that because we deal with curved geometries,  and , the node 

spacings along the  and  axes are variable.  node. In accordance with the literature in Finite Difference 
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Methods, each node represents a point in the domain where the velocity field is resolved. Naturally,  refers to the 

 node i.e. the succeeding node along the (local) x-axis, and  refers to the  node i.e. the 

succeeding node along the (local) y-axis. Note that because we deal with curved geometries,  and , the node spacings 

along the  and  axes are variable. 

 

When Eqn. 6 is substituted in Eqn. 3, we get 

 

 

(6) 

 
                                                              

We can now rearrange this to form an equation in   and , as follows. 

 

 

 

 

(7) 

              

However, at the boundaries, we must modify our equation, which is then of the form 

 

 

(8) 

                 

near the plate, and 

 

 

(9) 

               

near the edge of the domain. Now, we see that this method is implicit and thus can be resolved into a tridiagonal system 

to fully resolve the velocities at the  layer. Because this is an implicit method, it is unconditionally stable; this allows us 

to have arbitrary levels of discretisation in the numerical analysis.  layer. Because this is an implicit method, it is 

unconditionally stable; this allows us to have arbitrary levels of discretisation in the numerical analysis. 

We study the case when , and , i.e. a horizontal flow over a symmetric NACA 0005 foil. The 

fluid is assumed to be air, which gives us , approximately. Further note that the foil is assumed to be smooth 

i.e. we neglect the wall-shear component in the following calculations. , and , i.e. a horizontal flow 

over a symmetric NACA 0005 foil. The fluid is assumed to be air, which gives us , approximately. Further 

note that the foil is assumed to be smooth i.e. we neglect the wall-shear component in the following calculations. 
 
2. 3. Boundary layer over a symmetric airfoil 

Any airfoil is characterised by curved geometry, which is not easily amenable to an FD method. Past methods have tried 

to use meshed irregular grids i.e. grids with step size that varies with geometry or even tried to remove the mesh entirely 

\cite{liszka1980finite}. The latter is done via the random generation of nodes and using neighbouring nodes to compute the 

velocity. In any case, the fact remains that this difficulty in moving to complex geometries is one of the reasons for 

introducing more robust methods. 

A key observation is that these methods depart significantly from the otherwise simple analysis outlined above. As 

engineers are wont to do, our method to compute the velocity field builds on the flat plate solution. We use linear splines to 

approximate the curved airfoil boundary as a series of flat plates, and then solve the flat plate problem over each region. The 
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only added complexity is with the change in slope of each section, i.e. we now have to solve an inclined flat plate boundary 

flow problem. 

Fig. 1: Boundary layer over a flat plate. The x-axis is defined to be the surface of the plate, and the y-axis is the height from it in which 

the layer develops. 

  

Solving an inclined flat plate presents only one difficulty over the normal problem. The incoming velocity field, though 

horizontal, will have to be resolved along the plate. Let us suppose that the velocity fields are essentially thus: 

, initially. Furthermore, let the slope of the plate be . Then, denoting  as the components as 

resolved on the plate, we can easily see that 

 

 

(10) 

                                                

Note that this only resolves the velocities at the first plate i.e. at the leading edge. There are more spline interpolations along 

the curve. Fortunately, Eqn. \eqref{resolve-velocity} generalises easily to 

 

 

(11) 

                                                                                                                      

where  denotes the incoming velocity profile at the  plate and so on, and  is the difference in the slopes between the  

and  plates. With these modifications, we can repeatedly use the flat plate solution as outlined in Section 2.2. 

Fig. 1 shows linear spline interpolations of airfoils with multiple thicknesses and zero camber, of which was the 5% 

thickness profile was used to test this method. To reiterate, each segment of the spline will be treated as an inclined flat plate 

and solved thus. The velocity profiles at the ends of each plate/segment are stored as the velocities of the fluid along the foil. 

It is easily seen then, that a larger number of splines would result in a better approximation of the velocity profile. 

 

3. Results 
Using this solution, accuracy is compared with traditional methods. The accuracy of the method can be easily determined 

by a computation of the total lift force that the foil creates, as listed in Table 1. An approximate upper-bound calculation is 

used to find the lift coefficient, , which is in close agreement with the theoretical values expected for the NACA 0005 foil 

used. This is listed as follows. 
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Table 1. Approximate upper bound of lift coefficient vs actual lift coefficient in a NACA 0005 Airfoil with various angles of attack. 

 

Angle of attack 

( ) 

Approx. Coefficient of 

Lift  ( ) 

Theoretical Coefficient 

of Lift ( ) 

2° 0.24 0.219 

4° 0.43 0.438 

6° 0.67 0.657 

8° 0.76 0.87 

10° 0.80 0.6 

 

Importantly, the drag force caused by the foil is an extremely important factor in airfoil design, and so, an easily 

implementable solution with a good degree of accuracy is important. Finally, the velocity field as resolved along the geometry 

is also plotted, in Figure 2(a). This shows the resolution and development of the boundary layer over the airfoil. 

 

 
    (a)                                                                                    (b) 

Fig. 2: Plotting the resulting velocity field to observe the developing boundary layer. (a) Velocity field  over the domain. (b) 

The linear spline approximation, used for foils of 5%,10% and 15% thicknesses with no camber. 

 
4. Conclusion 

The inclined flat plate boundary layer solution is sequentially applied, piecewise, to approximate the flow-field over a 

curved airfoil. The lift coefficient is obtained from the flow-field so calculated, and values obtained closely match well 

established results. The deviation, however, increases at higher angles of attack, owing to inherent simplifications in the 

method. Furthering the work done so far, the authors propose to quantify approximation errors, which can then be used to 

extend the method to more complex geometries such as cambered airfoils, and at larger angles of attack. 

 
Appendix: Calculating Lift Coefficient 

The coefficient of lift has to be calculated using the velocity profiles over each individual plate. Note that the 

coefficient of lift is calculated as follows. To find the lift force , note that for an individual segment of length ,  
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(12) 

 

where  denotes the boundary layer velocity when developed over the upper segment of the foil,  is the same velocity 

developed on the lower segment, and  is the depth of the plate. For simplicity, we ignore any fringe effects. Now, we can 

sum over all the plates to get  

  

 

(13) 

                                                      

Therefore, we can use the definition of  as follows. 

  

 

 

 

(14) 

 
                                             

Finally, assuming the mean velocities  and $\bar{V_l} ar{V_l}$, we get  

 

 

(15) 

                                                                               

where , for some . Using the approximation detailed above, we obtain the computed values of  as shown in 

Tab. 1. Their close agreement allows us to see that the method developed does indeed model the foil accurately. The 

theoretical values are derived from Eqn. ___ from Thin Airfoil theory.  

 

                                                                                      (16) 

 

where  is the angle of attack, and  is the lift coefficient.  
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