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Abstract - This study is concerned with the problem of two-way coupled simulations of multiphase flows within an Eulerian-Lagrange 

framework. For a point-wise particles the standard method to introduce the Lagrangian particles as sources into the Eulerian mesh is the 

particle-in-cell (PIC) method. In this study, we present a boundary element method (BEM) model instead and show that the novel BEM 

model gives superior results when particles are not located close to the mesh nodes. We introduce a critical distance from the mesh node, 

which separates the domain volume, where the BEM model can be used and the volume, where the PIC model should be used. The results 

show that the BEM model can be used in about 90% - 99% of the volume depending on the mesh used. 
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1. Introduction 
Multiphase flows are fundamental in process technology. Their two main aspects are either mixture separation or, in 

contrary, making a mixture out of two pure substances as homogeneous as possible. Coupling between phases in multiphase 

flow can be modelled is different ways. Assuming there is only a significant force in the direction from carrier phase onto 

particulate phase, we call a flow 1-way coupled. In a case there is a mutual interaction between the two phases, we call it 2-

way coupled flow [1]. The 4-way coupled flow considered also collisions between the particles. According to ratio of volume 

of both phases we distinguish dense and dilute flows. Characteristics of dilute flow is, that the most important forces that 

occur, are interacting forces between two phases, while for dense flows the main flow characteristics come from the particle 

collisions. The dilute flows are generally modelled using Euler-Lagrange models [2]. The accuracy of the Euler-Lagrange 

model depends on the accuracy of the interphase momentum/heat transfer between particle and mesh vertices. Interphase 

exchange is usually modelled using Particle-in-cell method, introduced firstly by Evans and Harlow [3]. Method is based on 

volume averaging across the computation cell, in which particle is located. First disadvantage of the method is that volume 

averaging does not have a physical background and the second one, that it is strongly dependent on mesh grid [4]. Fluid is 

most commonly modelled by the finite volume method, which is coupled with Lagrangian particle tracking and PIC for 

momentum/heat exchange. Our CFD solver uses the Boundary-Domain Integral Method BDIM [5], which has an unique 

advantage when handling point sources. In this paper, we will demonstrate how to use the BEM to derive a novel 

heat/momentum exchange model. 

 

2. Governing equations 
As a model problem we consider heat diffusion from a point-wise particle with a constant heat source 𝜁. The chosen 

phenomenon is representative enough and the analytical solution in an unbounded domain is known. The dimensionless 

differential equation describing the phenomenon is:  

 
𝜕𝑇

𝜕𝜏
− ∇2𝑇 =  𝜁 𝛿(𝑟, 𝑝) 

 

(1.a) 

where 𝜏 represents the dimensionless time, 𝑟 is the location vector, 𝑝 is the particle position and 𝑇 is dimensionless 

temperature. Alternatively, we can model the particle as a constant volume source of energy within a single mesh element, 

 

𝜕𝑇

𝜕𝜏
− ∇2𝑇 =

𝜁

𝑉𝑒
,  (1.b) 
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where 𝑉𝑒 is the volume of the mesh element, in which the particle is located. This is the basis of the standard PIC method. 

Eq. (1.a) can be transformed into an integral equation using the Green’s clause as [6]: 

 

𝑐(𝜉)𝑇(𝜉) + ∫ 𝑇(𝑟
Γ

) �⃗�∗(𝜉, 𝑟) ⋅ ⅆΓ⃗ = ∫ 𝑢∗(𝜉,
Γ

 𝑟)�⃗� ⋅ ⅆΓ⃗ − ∫ (
𝜕𝑇(�⃗⃗�)

𝜕𝜏
) 𝑢∗(𝜉, 𝑟) ⅆΩ + 

Ω

∫ 𝜁 𝛿(𝑟, 𝑝) 𝑢∗(𝜉, 𝑟) ⅆΩ
Ω

, 

 

(2) 

Where  𝜉 is the location vector of the source point,  𝑢∗(𝜉, 𝑟) is the fundamental solution of the Laplace equation, 𝑞∗(𝜉, 𝑟) is 

the gradient of the fundamental solution, 𝑐(𝜉) the free term coefficient and �⃗� = ∇⃗⃗⃗𝑇. The  Γ⃗ and Ω are domain boundary and 

the domain, respectively. When employing BDIM we mesh the domain with domain elements. Eq. (2) is used on each 

element in via compatibility boundary conditions, a system of linear equations for temperature and its flux is obtained. 

Further details about BDIM are given in [7].  

Heat flux exchange between particles and the fluid is modelled by the last term on the right hand side of (2). Due to the 

properties of the Kronecker delta functions, we may write 

 

 ∫ 𝜁 𝛿(𝑟, 𝑝) 𝑢∗(𝜉, 𝑟)
Ω

ⅆΩ = 𝜁 𝑢∗(𝑝, 𝑟) 

 

(3) 

and thus avoid domain integration. Boundary domain integral method thus enables us to implement heat exchange from 

particles to fluid by simply summing the contribution of all particles using the formula given in (3). The drawback of this 

approach is the singularity of 𝑢∗, which occurs when the particle is located close to a mesh node.  

The interphase heat exchange in PIC method takes place inside of the element, in which the particle is located. We model 

the particle as a constant heat source within the mesh element in which they are located. Transforming Eq. (1.b) into integral 

form, we obtain: 

 

𝑐(𝜉)𝑇(𝜉) + ∫ 𝑇(𝑟
Γ

) �⃗�∗(𝜉, 𝑟) ⋅ ⅆΓ⃗ = ∫ 𝑢∗(𝜉,
Γ

 𝑟)�⃗� ⋅ ⅆΓ⃗ − ∫ (
𝜕𝑇(�⃗⃗�)

𝜕𝜏
) 𝑢∗(𝜉, 𝑟) ⅆΩ + 

Ω

𝜁

𝑉𝑒
∫ 𝑢∗(𝜉, 𝑟) ⅆΩ

Ω𝑒

. 

 

(4) 

Representation (4) requires the calculation of the domain integral due to particle presence and does not consider the exact 

location of the particle. Both of these facts are seen as drawbacks of the PIC method as compared to the newly proposed 

BEM method (3). To facilitate the comparison of the results we define the RMS norm as  

 

𝑙𝑅𝑀𝑆 = √
∑ (𝑇𝑎𝑛𝑎 − 𝑇𝑛𝑢𝑚)2𝑁

𝑖=1

∑ 𝑇𝑎𝑛𝑎
2𝑁

𝑖=1

, 

 

(5) 

where 𝑇𝑎𝑛𝑎 is the result obtained by the analytical calculation and the 𝑇𝑛𝑢𝑚 is the result of the calculation using either BEM 

or PIC. 

 

3. Numerical example 
We consider a cubical domain (0,1)3 and place one particle inside, which emits heat with source 𝜁. Initially, the 

domain is at T=0. We prescribe Dirichlet boundary conditions on the boundary of the domain using the known analytical 

solution of this problem [8] 

𝑇𝑎𝑛𝑎(𝑟, 𝜏) =
𝜁

4𝜋𝑟
erfc (

𝑟

2√𝜏
) . 

 

(6) 
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The domain is meshed using cubical elements having quadratic interpolation of functions and linear interpolation of flux. 

Thus, each mesh element has 27 function nodes and 24 flux nodes. Due to symmetry, we place the particles only in 1/8 of 

the cell without loss of generality (Figure 1a). We run each simulation until 𝜏 =10 and use Eq. (5) to calculate the RMS norm. 

The simulations were done four times, for each of the two different meshes twice. Firstly, we consider the mesh with regular 

elements and secondly a mesh with irregular, cuboidally shaped elements. The distribution of elements in the meshes was 

4x4x4 and 8x8x8 with 64 and 512 elements, respectively. Every simulation had only one particle in the domain. The number 

of simulations has been ~105. Each particle had a dimensionless heat source of magnitude 𝜁 = 10. The locations of the 

particles have been defined with use of a geometry modeller – they were placed in a volume of 1/8th of a single element 

located inside the domain, with no border to domain’s surfaces.   

 

 

a) 1/8 of a mesh element 
 

b) All data  

 

c) Detail 

 
Fig. 1: A view of nodes in 1/8th of a mesh element. Nodes were colour coded by type based on their location (edge, center, surface) (a). 

Panels (b) and (c) show the RMS norm of the temperature solution versus the distance of the particle to the closest mesh node. 

 

For every simulation the RMS norm 𝑙𝑅𝑀𝑆 and a distance from the particle to the closest mesh node ⅆ have been 

computed. Since different meshes were used, a new dimensionless parameter was introduced as ℎ =
𝑑

√𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡
3 . 

According to the type of the mesh node, closest to the particle position, the results can be divided into five mesh node groups 

with different characteristics (Figure 1). The first group (violet color) consists of all the flux nodes, the second group (yellow) 

of the edge mid nodes, third (blue) of the surface mid nodes, the fourth (red) of corner node and the last (black) of center 

node. Every mesh node inside the group has the same specifics, which is proven by looking at the figure 1c. There are, when 

observed in detail, all three flux nodes inside the violet group and each of them separately has the same shape as the other 

two. Thus, we proved that the error of the computed temperature with a specific distance between particle and the mesh node 

would be of the same order of magnitude, independently of which mesh node of same type is taken.  

In Figure 2a we show the relationship between RMS norm 𝑙𝑅𝑀𝑆 and dimensionaless distance for a set of particles, 

where were located at an approximately equal distance for the edge mid mesh node. The inset panel show that the RMS norm 

is highest for the particles, for which the second closest mesh node is a flux node. 

Considering only worst-case simulations with highest RMS norm values, we prepared Figure 2b out of all simulation 

data, which was shown in Figure 1b. We applied a moving average filter to obtain smooth RMS norm versus distance 

relationship. The dashed line in Figure 1b represents the RMS norm obtained, when using the PIC heat exchange model. For 

each of the mesh node groups there exists a critical dimensionless distance ℎ̂ at which the PIC model outperforms the newly 

proposed BEM model. The PIC 𝑙𝑅𝑀𝑆 is constant regardless of the particle position in the mesh element. The critical 

dimensionless distance  ℎ̂ is defined as a distance for which the simulation using BEM and PIC heat exchange model have 

the same 𝑙𝑅𝑀𝑆. The critical distance is largest for the flux nodes and smallest for the centre node. 

Finally, we plot results obtained using different meshes in the same graph for the comparison (Figure 2c). We observe that 

a finer mesh, which includes smaller elements, leads results of the same order of magnitude for the particle at the same 
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dimensionless distance from the mesh nodes. Furthermore, the mesh with irregularly shaped elements also results in RMS 

norms of the same order of magnitude. 

 

 

a) One belt 

 

b) Critical distances 
 

c) Comparison 

Fig. 2: The particles who have a second closest mesh node nearer than others, have also higher 𝑙𝑅𝑀𝑆 (a). Worst case error norm versus 

distance and definition of critical distances ℎ̂ (b). Mesh design and number of elements have an impact on the results. (c). 

 

4. Conclusions 
We presented a novel model for heat/momentum exchange in Euler-Lagrange simulations of particle laden flows. The 

presented model uses the properties of the integral representation of the governing equations obtained via Greens clause and 

with the aid of the fundamental solution of the problem. We compared the developed model with the standard PIC model 

and discovered the existence of a critical distance between the particle and the mesh modes, where the new model 

outperforms the PIC model. The PIC model is superior only in cases, when particle is located very close to the mesh nodes. 

Results reveal, that the flux mesh node have the highest critical distance. The accuracy of the results depends on the mesh 

size. The new model yields results of superior accuracy when the particle is located in about 90% of the domain volume. 
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