Ascorbic Acid Coated Magnetite as Nanoabsorbent for CO₂ Capture

Jong Ha Park¹, Jae Won Lee¹, Yong Tae Kang^{1, 2}

¹Research Center for Plus Energy Building Innovative Technology, Seoul, 02841, Republic of Korea ²School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea joshuapjh@korea.ac.kr; hercule.jw.l@gmail.com; ytkang@korea.ac.kr

Extended Abstract

As the increase of CO_2 level in the atmosphere is becoming a major threat to human beings, various research on carbon capture utilization and storage (CCUS) technologies have been conducted. Among the various CO_2 capture technologies, physical absorption is widely used due to their economic feasibility, commercialization, and continuous development [1]. Methanol is conventionally used as physical absorbent for acid gas removal; however, the absorption process must be maintained at -40 °C for the process to be efficient [2]. This low temperature condition makes the process energy inefficient due to immense refrigeration and heating energy required for absorption and regeneration, respectively. To reduce the energy expenses, studies on liquid nanoabsorbents have been conducted so that the absorption process can be energy-efficient by operating at ambient temperature [3, 4].

Liquid nanoabsorbents are manufactured by dispersing nanoparticles, such as Al_2O_3 , SiO_2 , TiO_2 , MgO, and ZnO, to base fluid. When compared to base fluid, the nanoabsorbents showed higher absorption performance by mass transfer enhancement. Pineda et al. [5] reported the absorption enhancement of Al_2O_3 /methanol and SiO_2 /methanol by 9.4% and 9.7%, respectively. Also, Lee et al. [6] conducted a combined CO₂ absorption/regeneration cycle performance evaluation, using Al_2O_3 /methanol and SiO_2 /methanol, and verified the enhancement in both absorption and regeneration. Investigation on magnetic nanoparticles, such as Fe_3O_4 and NiO, have discovered that with the assistance of external magnetic fields, higher absorption enhancement can be obtained. Wu et al. [7] reported that increase in magnetic field intensity leads to decrease in viscosity and surface tension of nanoabsorbent, which contributes to higher absorption capacity. Sophisticated analysis by Salimi et al. [8] showed that by using an external magnetic field, mass transfer rates of Fe_3O_4 /water and NiO/water were enhanced by 14% and 10.5%, respectively.

In this study, the surface of Fe₃O₄ nanoparticles is fabricated by coating with L(+)-ascorbic acid (AA) to obtain high surface area and dispersibility, which are advantageous characteristics for CO₂ absorption enhancement. The X-ray diffraction (XRD) analysis of fabricated AA-Fe₃O₄ showed diffraction peaks at $2\theta = 30.2^{\circ}$, 35.22° , 42.88° , 56.82° , and 62.55° , which matches well with the diffraction peaks of Fe₃O₄. The surface area of AA-Fe₃O₄ measured by Brunauer-Emmett-Teller (BET) method, was increased by approximately 28 times compared than Fe₃O₄ particles. It is visible from the FE-SEM results that the surface roughness of the particles is increased by the coating, and surface roughness values increased from 139.34 nm to 205.34 nm. The dispersion stability of the nanoabsorbents was assessed by measuring cluster size diameter, polydispersity index, and zeta potential. The cluster size diameter of AA-Fe₃O₄ was reduced, compared to Fe₃O₄, from 16,793 nm to 397 nm. Also, the polydispersity index and zeta potential values were 0.335 and 45.6 mV, respectively, which indicates that AA-Fe₃O₄/methanol is monodispersed. The absorption experiment with the assistance of external magnetic fields, showed an increase in the regeneration absorption ratio. This indicates that there is a significant difference in regeneration results by using magnetic fields and magnetic nanoparticles. It is expected that actual cyclic industrial application be feasible by designing a suitable magnetic-field-generating device to be installed in the absorber/regenerator.

References

- [1] E. Tsupari, J. Kärki, A. Arasto, E. Pisilä, "Post-combustion capture of CO₂ at an integrated steel mill–Part II: Economic feasibility", *Int. J. of Greenh. Gas Con.*, vol. 16, pp. 278-286, 2013.
- [2] B. Burr and L. Lyddon, "A comparison of physical solvents for acid gas removal," in *GPA Convention*, Grapevine, TX, 2008.
- [3] J.-Z. Jiang, S. Zhang, X.-L. Fu, L. Liu, and B.-M. Sun, "Review of gas-liquid mass transfer enhancement by nanoparticles from macro to microscopic," *Heat Mass Transf.*, pp. 1-12, 2019.
- [4] Y. Xuan and Q. Li, "Heat transfer enhancement of nanofluids," Int. J. Heat Fluid Fl., vol. 21, no. 1, pp. 58-64, 2000.
- [5] I. T. Pineda, J. W. Lee, I. Jung, and Y. T. Kang, "CO₂ absorption enhancement by methanol-based Al₂O₃ and SiO₂ nanofluids in a tray column absorber," *Int. J. Refrigeration*, vol. 35, no. 5, pp. 1402-1409, 2012.
- [6] J. W. Lee, I. T. Pineda, J. H. Lee, and Y. T. Kang, "Combined CO₂ absorption/regeneration performance enhancement by using nanoabsorbents," *Appl. Energy*, vol. 178, pp. 164-176, 2016.
- [7] W.-D. Wu, G. Liu, S.-X. Chen, and H. Zhang, "Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field," *Energ. Buildings*, vol. 57, pp. 268-277, 2013.
- [8] J. Salimi, M. Haghshenasfard, and S. G. Etemad, "CO₂ absorption in nanofluids in a randomly packed column equipped with magnetic field," *Heat Mass Transf.*, vol. 51, no. 5, pp. 621-629, 2015.