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Abstract - Pool boiling has been investigated for many years and there are several models for the prediction of the nucleate pool 

boiling heat transfer. However, there are large discrepancies among these models. Most of the existing models depend on the 

nucleation site density and the bubble dynamics parameters, such as bubble growth rate, departure diameter and frequency. Thus, the 

performance of the heat transfer models can be affected by the models used for the prediction of the bubble dynamics parameters. In 

this paper, an experimental study was conducted to measure the bubble growth rate in saturated pool boiling of de-ionised water on a 

smooth copper surface at atmospheric pressure. The measurements were conducted only for the isolated bubble regime. A smooth 

surface was selected to avoid the uncertain effects of surface microstructure on bubble dynamics. The obtained experimental data were 

compared with some existing bubble growth models. The results demonstrated that bubble growth rate and departure diameter increase 

as wall superheat increases. The paper helps elucidate bubble dynamics and thus can contribute in understanding the performance and 

results given by existing mechanistic heat transfer models.  
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Nomenclature 

 

   projected area, [m
2
]   time, [s] 

    liquid specific heat, [J/kg K]    growth time, [s] 

  

   

  

bubble diameter, [m] 

diameter of heat transfer surface, [m] 

bubble generation frequency, [1/s] 

    

  

     

waiting time, [s] 

temperature, [K] 

saturation temperature, [K] 

  

  

gravitational acceleration, [m/s
2
] 

heat transfer coefficient, [W/m
2
 K]  

   

   

liquid bulk temperature, [K] 

boiling surface temperature, [K] 

    latent heat, [J/kg]     Wall superheat, (  -      , [K] 

   Jakob number,              ⁄ , [-]   vertical distance, [m] 

    

   

thermal conductivity of copper, [W/m K] 

thermal conductivity of liquid, [W/m K] 
 

Greek Symbols 

  characteristic length, [m]   liquid thermal diffusivity, [m
2
/s] 

   Nusselt number,          , [-]   volumetric thermal expansion coefficient [1/K] 

  pressure, [Pa]    liquid density, [kg/m
3
] 

   Prandtl number, [-]    vapour density, [kg/m
3
] 

    heat flux, [W/m
2
]   kinematic viscosity [m

2
/s] 

  bubble radius, [m]   

   correlation coefficient, [-]   

   Rayleigh number,   (        
   ⁄ , [-]   
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1. Introduction 
Boiling heat transfer can be encountered in a wide range of applications such as refrigeration and air conditioning 

systems, power generation (Rankine cycle), thermal desalination systems, food and chemical industries, cooling of 

high heat flux systems such as electronics and nuclear reactors. Understanding the boiling fundamentals is crucial for 

the development of accurate prediction models, not only for pool boiling but also for flow boiling applications. 

Although pool boiling has been investigated for many years, there is still a wide scatter among reported predictions of 

the boiling curve, i.e. heat flux versus wall superheat. Historically, the work conducted by Jakob and his research 

group, in the 1930s, may be the first attempt to suggest a mechanistic model based on the bubble-agitation mechanism 

(agitation in the liquid bulk and the boundary layer). This work is summarized in chapter 29 in the textbook by Jakob 

[1]. Based on this mechanism, several models have since emerged, such as the models suggested by Rohsenow [2] and 

Forster and Zuber [3]. The advantage of these models is simplicity and they do not need input parameters such as 

nucleation site density, bubble growth rate, departure size and frequency.  

With the advent of 1960s, more researchers focused their efforts on the heat transfer mechanisms and suggested 

several mechanistic models based on studying one single bubble. The commonly suggested mechanisms included 

transient conduction, microlayer evaporation and latent heat (for bubble formation). Examples of these models were 

proposed by Han and Griffith [4] and Mikic and Rohsenow [5], who assumed that the heat transfer mechanism, in the 

area of bubble influence, is periodic quenching of the surface by the cold liquid that rushes down towards the 

nucleation site when the bubble departs the surface. At locations outside the area of bubble influence, the heat transfer 

mechanism was assumed to be natural convection. In literature, this quenching mechanism was originally called in 

reference [4] as “bulk-convection”, while it was also referred to as transient conduction. This modelling approach was 

also called in literature “heat flux partitioning approach”, i.e. the total heat flux is resulting from the summation of 

heat fluxes due to each separate mechanism. Other examples include the models by Yu and Cheng [6] and Zupančič et 

al. [7] who assumed natural convection, transient conduction and microlayer evaporation, the model by Kim and Kim 

[8] who assumed natural convection, transient conduction and latent heat and the model by Kumar et al. [9] who 

assumed natural convection, forced convection and latent heat transfer. These models require correlations for the 

prediction of nucleation site density, bubble departure diameter, and frequency, which are difficult to measure over a 

wide range of operating conditions and thus increase the challenge in the prediction of the pool boiling curve.   

Bubble growth rate is one of the important variables required for studying the hydrodynamic forces during the 

bubble ebullition cycles and thus the prediction of bubble departure diameter and frequency. There are several models 

for the prediction of bubble growth rate, which can be divided into two categories: bubble growth in a uniformly 

superheated liquid (the bubble is fully surrounded by a superheated liquid layer) and bubble growth in a non-uniform 

superheated liquid (part of the bubble is surrounded by a superheated liquid layer, as is the case of growth on a heated 

surface in nucleate boiling -heterogeneous boiling). In both categories, researchers agreed on that there are two stages 

of bubble growth namely: inertia-controlled stage where the bubble radius is governed by the relation     and heat 

diffusion-controlled growth (asymptotic growth) in which the relation between radius and time is       . The 

inertia-controlled growth dominates only the early stage of growth and thus it was ignored in most models. For 

instance, Forster and Zuber [10] assessed the inertia- and diffusion-controlled growth and reported that the 

hydrodynamics effects (inertia-controlled growth) are only important up to 0.1 ms, i.e. bubble growth rate is 

dominated by heat diffusion. Sernas and Hooper [11] measured the bubble growth rate for water boiling on a chromel 

strip (1.6 by 38.1 mm) and found that the inertia-controlled growth dominates only up to 0.05 ms. In the first category 

of bubble growth models (uniform superheat), the bubble was assumed to be a sphere and the heat was assumed to 

diffuse through the bubble wall radially from all directions. On the contrary, in nucleate boiling, due to the presence of 

a heated surface, the bubble shape may not be spherical and several models have been suggested to account for the 

non-uniform superheat around the bubble wall. For example, Han and Griffith [4] assumed that the bubble is covered 

with the wall thermal boundary layer in every ebullition cycle and it grows due to the evaporation of this layer 

(relaxation layer). Cooper [12] suggested a model based on the assumption that microlayer evaporation is the 

dominant mechanism in bubble growth especially at sub-atmospheric pressure. Van Stralen et al. [13] proposed a 

bubble growth model based on contribution from the relaxation layer (the thermal envelope around the bubble).  
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Mahmoud and Karayiannis [14] conducted a review study and a comparison between the existing bubble growth and 

departure models. They concluded that there is a wide scatter among the existing models of bubble growth and departure. 

This may explain the large discrepancy among researchers on the prediction of the nucleate pool boiling curve. Thus, there 

is a need for more experimental research to understand the bubble dynamics parameters. In this study, saturated pool 

boiling of de-ionized water on a polished copper surface was investigated at atmospheric pressure. The polished surface 

was selected to avoid other effects due to the surface micro-structure. The focus of the present paper is on the measurement 

of the bubble growth rate at atmospheric pressure. The results are compared with some existing models summarized in 

Table 1. Symbols are defined in the Nomenclature section. 

 
Table 1: Bubble growth models in uniform and non-uniform superheat 

Author  Model Comment  

Fritz and Ende [15]   ( √ ⁄ )  √  ,           
        

     
  

 

Uniform 

superheat 

 

Forster and Zuber [10]   √   √   

Plesset and Zwick [16]   (√   ⁄ )   √   

Mikic et al. [17] 
   

 

 
[(         (   

 
   ] 

  (
 

 

        

      
)
   

       √
   

 
           

  

                 
   

   

Cole and Shulman [18]            √   Non-uniform 

superheat Cooper [12]              √   

Van Stralen et al. [13]           √   

b: 0.794 for hemispherical bubbles and    for spherical bubbles 

    
        
     

    (
 

  
)

   

 

Du et al. [19]                 √    [mm], 

                           
 

           ,   P in MPa 

 

2. Experimental Setup 
2.1. Boiling Chamber and Test Section 

Figure 1a depicts the schematic drawing of the experimental facility. It consists of the following: (i) rectangular 

boiling chamber (250 × 250 × 300 mm) made of stainless steel with four transparent visualization windows (158 × 220 

mm), (ii) two helical coil heat exchangers (one on the top side of the chamber to work as a condenser and one immersed in 

the liquid to work as a liquid sub-cooler), (iii) circulation chiller to supply the cooling water-glycol mixture to the 

condenser and the sub-cooler, (iv) test section insulation block made of Polyether Ether Ketone (PEEK) that accommodate 

the copper test section, see Figs. 1b and 1c, (v) immersion cartridge heater of power 1500 W to control the liquid bulk 

temperature and conduct liquid degassing before the test, (vi) data logger cDAQ from National Instruments, connected to a 

PC with Labview software to record the data, (vii) 1.5 kW DC power supply (Electro-Automatik) for supplying the heat to 

the test section, (viii) High-speed video camera (Phantom Miro Lab110) with NAVITAR 12X zoom lens system, (ix) two 

T-type thermocouples for measuring the liquid and vapour temperature and one pressure transducer (Omega, PX319, 0 – 

3.5 bar) for measuring the system pressure.  

The test section was made of oxygen-free copper and was insulated with a PEEK housing as seen in the exploded view 

in Fig. 1b and the assembly drawing in Fig. 1c. The copper test piece has a diameter of 30 mm and a height of 42.5 mm. It 

has five holes of diameter 0.6 mm at 6 mm equal distance along the vertical centreline to insert five thermocouples, and an 

O-ring shoulder of size 2.5 mm width and 2 mm depth leaving 25 mm diameter as a boiling surface, see Fig. 2b. The test 

piece was connected to a copper heater block using M10 thread connector (made of copper) and the thermal contact 

resistance was reduced by a thermal paste, see Fig. 2a for the assembly of the test section and the heater block. The heater 
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block has four vertical holes (see Fig. 2c) with diameter 12 mm to accommodate four cartridge heaters (400 W each), 

which are connected to the DC power supply. The test section was manufactured using High Precision Micro Milling 

Machine (HERMLE C20U) and the boiling surface was finished by diamond turning machine to obtain a smooth 

surface. The surface was analysed using Surface Metrology System (NP FLEX-3D) and the Sa value of the tested 

surface was 49.6 nm. The temperature reading of the five vertical thermocouples was plotted versus the vertical 

distance and the gradient was used to calculate the applied flux     using Eq. (1). The measured temperature versus 

distance exhibited linear fitting with a correlation coefficient, R
2
 > 0.97, which verifies the 1D assumption in 

calculating    . The temperature difference between the wall and the saturation temperature (wall superheat) was 

calculated using Eq. (2).  

        

  

  
 

(1) 

            (2) 

 

The saturation temperature was based on the pressure measured using the pressure transducer. All thermocouples 

were calibrated and the maximum uncertainty in the temperature measurements was ± 0.5 K. The propagated 

uncertainty analysis was calculated according to the method given in Coleman and Steel [20]. The highest uncertainty 

in the heat flux was 7 %.   

 
(a)  

 

 
(b) 

 

 
(c)  

Fig. 1: (a) Schematic drawing of the experimental facility, (b) Exploded view of the test section, and (c) The test section assembly 

 
2.2. Experimental Validation 

Many researchers validated their experimental system by conducting boiling experiments and comparing the 

experimental boiling curve with the well-known Rohsenow [2] pool boiling correlation. This approach may not be 

Stand 
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accurate because boiling depends strongly on the surface microstructure. In the present study, experimental system 

validation was conducted using natural convection single-phase experiments rather than boiling experiments. Fig. 3 depicts 

depicts the heat flux plotted versus the temperature difference between the surface (  ) and the liquid (  ). The results 

were compared with the natural convection correlation reported in Bergman et al. [21], see Eq. (3). It is obvious that there 

is a good agreement between the measurements and the prediction with average deviation of 8.8 %, which verifies the 

accuracy of the experimental measurement system.   

 

   {
                                                 

                                                              
 

(3) 

 

 

 
(a) 

 
(b) 

 

 

 
 

(c) 

Fig. 2: (a) Copper test section and the heater block, (b) Test section, and (c) The heater block 

 

 
Fig. 3: Experimental validation using single-phase natural convection 

         

3. Results and Discussion 
This section presents the measured bubble growth rate in the isolated bubble regime for wall superheat of 2.6 K, 5.3 K 

and 8.3 K. The Phantom high-speed camera was used for recording the videos at resolution of 1024 × 768 pixel and speed 

2182 f/s. All bubble size measurements were conducted using ImageJ software. The measured bubble diameter was the 

equivalent diameter calculated from the projected area of the bubble shape (the shape is not always spherical) as defined by 

Eq. (4). It is worth mentioning that the camera was tilted with an angle of 17
0
, which will make the size of the measured 
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object smaller than the real size. To consider the effect of the tilt angle, the camera was calibrated at the 

aforementioned settings (resolution, speed and angle) using a standard ball bearing of 12.7 mm diameter, which was 

measured using a micrometer screw gauge. The measured equivalent diameter using the projected area was found to 

be 8.9 mm (29.9 % less than the real size). Thus, the measured diameter in the present study must be corrected by 

multiplying the measured value by 1.299. In fact, the camera tilting affects only the measured vertical side not the 

horizontal side. This was also confirmed by measuring the height of a standard object of (height 14.74 mm) at the 

same camera settings and tilting angle and the measured value was 13.1 mm (11.1 % lower than the real height). Thus, 

the effect of camera tilt on an object height is much smaller than the effect on the projected area. The effect of camera 

tilt on the vertical height is already included in the projected area and thus no need for correction.  

  √
   

 
 

 

(4) 

It is well-known that there is a random distribution of nucleation sites on a surface with a random microstructure. 

In the present study, measurements were conducted for a selected active nucleation site, in the isolated bubble regime, 

as seen in the pictures of Fig. 4a. The measurements were conducted for bubbles without horizontal or vertical 

coalescence. Fig. 4b depicts the effect of superheat on the measured bubble diameter versus time at atmospheric 

pressure in saturated boiling of de-ionized water. It is obvious that, for the lowest degree of superheat, the bubble 

grows rapidly for a short time (< 4 ms) then it grows very slowly until it departs after 33.9 ms (growth time,   ) with 

departure diameter 1.4 mm. The measured waiting time (   ) for this bubble was 2.3 ms, which gives departure 

frequency of (   (       ⁄ ) of about 28 Hz. Increasing the superheat to 5.3 and 8.3 K resulted in the same trend 

but with a higher rate, lower growth time and larger departure diameter. For superheat 5.3 K, the growth time was 9.6 

ms, the waiting time was 0.92 ms (       ) and the departure diameter was 1.9 mm while for superheat 8.3 K the 

growth time was 11 ms, waiting time 0.46 ms (        ) and the departure diameter was 2.8 mm. It is obvious that 

the departure diameter increased from 1.4 to 2.8 mm when the superheat increased from 2.6 to 8.3 K.  
 

   
              After 0.46 ms                     After 6 ms 

(a)  
(b) 

Fig. 4: (a) Pictures of bubble growth at 8.3 K superheat, (b) effect of superheat on bubble growth diameter versus time. 
 

 Fig. 5 illustrates the comparison between the measured bubble growth rate and the models summarized in Table 

1. The comparison demonstrated that the model by Fritz and Ende [15] and Cole and Shulman [18] and Van Stralen et 

al. [13] under-predict the bubble growth significantly, while the models by Forster and Zuber [10], Plesset and Zwick 

[16], Mikic et al. [17], Cooper [12] and Du et al. [19] predict the experimental data reasonably well, especially for 

superheat 5.3 and 8.3 K. For the lowest superheat, most correlations could not predict the experimental trend because 

these models were based on the relation        while the best fit for the experimental data at the lowest superheat is 

      . This means that the existing models may not be valid at low superheats (< 5.3 K) or Ja < 15. It is interesting 

to note that most researchers did not account for the camera tilting angle, which could result in different conclusions 

about the performance of the existing models. For example, if the effect of camera tilt was ignored in the present 
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study, all the above models that agreed with the data will over-predict the data. On the contrary, the model by Fritz and 

Ende [15], which under-predicted the data will agree with the experimental data.      

Fig. 5 (i) depicts a comparison between the data of the present study and the experimental data from [22, 23] for 

saturated boiling of water at nearly the same superheat but different substrate materials. Gerardi et al. [22] studied saturated 

boiling of water on a sapphire substrate (thermal conductivity 25.1 W/m K) with the boiling side coated with Indium Tin 

Oxide (ITO) while Kangude and Srivastava [23] used the same approach but with borofloat glass (thermal conductivity 1.1 

W/m K) as the substrate material. In the study by Gerardi et al. [22], the bubble growth rate, growth time and departure 

diameter were larger than the values of the present study. The growth time and departure diameter were 51.5 % and 15.8 % 

larger, respectively. On the contrary, in the study by Kangude and Srivastava [23], the growth rate was lower, the growth 

time was extremely larger and the departure diameter was nearly the same compared to this present study. The growth time 

was 2494.5 times larger while the departure diameter was larger by 5.3 %. They attributed this large growth time to the 

hydrophobicity of the surface (the measured contact angle in their study was 90
0
). It is worth mentioning that the measured 

contact angle in the present study on the copper surface was 85
0
. It is also interesting to note that the two studies by [22] 

and [23] are similar in that boiling occurred on the ITO heater side but the results are completely different. The reason is 

not understood, i.e. is the difference due to the effect of substrate material or due to other factors. These discrepancies and 

uncertainty increase the research challenge in this area and raise the question about the validity of bubble growth measured 

on glass or other transparent substrates in relation to metallic surfaces of practical interest.      
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(h) 

 
(i) 

Fig. 5: Comparison of the bubble growth models (a-d: uniform and e-h: non-uniform superheated layer) and past experiments (i) 
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with the present results for bubble growth. 

 

4. Conclusion 
Bubble growth was measured in saturated boiling of water on a smooth copper surface to help understand the 

bubble dynamics parameters required for the development of mechanistic heat transfer models. The results were 

compared with some existing models for bubble growth in uniform and non-uniform superheat. It was concluded that 

the models by Forster and Zuber [10], Plesset and Zwick [16], Mikic et al. [17], Cooper [12] and Du et al. [19] 

predicted the experimental data reasonably well. The effect of camera tilting angle may result in different conclusions 

among researchers. Additionally, due to the fact that glass substrates with transparent heating may not represent the 

real metallic boiling surfaces, more experiments are required to measure the bubble dynamics on metallic surfaces 

over a wide range of operating conditions and fluids.    
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