Insights into Multi-Stage Heat Release Phenomenon of Polyoxymethylene Dimethyl Ether 1 (PODE₁)

Denis Buntin¹, Leonid Tartakovsky^{1, 2}

 ¹ Faculty of Mechanical Engineering, Technion – Israel Institute of Technology Technion City, Haifa 3200003, IL, Israel buntin@campus.technion.ac.il; tartak@me.technion.ac.il
² Grand Technion Energy Program, Technion – Israel Institute of Technology Technion City, Haifa 3200003, IL, Israel

Abstract - Transition to sustainable energy origins, carbon-neutral energy carriers and leaner-burning combustion concepts is strongly discussed for its prospective role in greener and secure energy future. Polyoxymethylene dimethyl ethers (PODE_n), well-suited for compression-ignition combustion modes, are considered as potential carbon-neutral candidates. To elucidate their potential, a detailed knowledge of *lean* PODE_n combustion characteristics, as well as underlying chemical kinetics, is necessary. In this paper, numerical insights into multi-stage heat release peculiarities of PODE₁/oxidizer propellant pertinent to lean spontaneous auto-ignition, are presented and compared to n-heptane. Macro-dynamics of *three-stage heat release (3SHR) phenomenon*, earlier revealed by the authors to predominantly occur at low-to-intermediate initial temperatures (below 900 K) at ultra-lean conditions (equivalence ratios (φ) below 0.5), is discussed. For this task, *initial-state sensitivity analysis* of the heat release rate (HRR) characteristic parameters (e.g., peak amplitudes, proximities), was conducted. Detailed PODE₁ kinetic mechanisms, formerly identified as the most accurate for lean PODE₁ autoignition, were utilized for constant-volume adiabatic reactor simulations at initial temperatures of 600-900 K, pressures of 10-40 bar, and $\varphi = 0.1$ -0.5. Results revealed distinct perturbing effects of initial-state parameters on 3SHR macro-dynamics, sensed through raw and logarithmic derivative profiles of peak proximities and amplitudes. PODE₁ and n-heptane showed several contrary results attributed to dissimilarities in negative temperature coefficient (NTC) behavior.

Keywords: PODE₁, methylal, multi-stage heat release, auto-ignition, chemical kinetics

1. Introduction

Polyoxymethylene dimethyl ethers (CH₃O(CH₂O)_nCH₃, PODE_n, OME_n) are intensively discussed as promising lowemission/carbon-neutral synthetic alternatives for compression-ignition (CI) based systems. PODE_n are highly reactive nontoxic compounds (cetane number (CN) \geq 63, n>1), featured by comparatively low C/H ratios, high O-content, and no C-C bonds. The latter result in reduced soot precursors formation, and thus in decreased particulate-matter (PM) emissions. To reduce the net CO₂ emissions, PODE_n can be renewably produced through CO₂ capturing (thus referred to as e-fuels) [1–3]. The simplest representative of PODE_n family is PODE₁ (CH₃O(CH₂O)_{n=1}CH₃, dimethoxymethane (DMM) or methylal). Compared to dimethyl ether (DME), PODE₁ is liquid at ambient conditions (BP=42°C), has higher oxygen content (42.1 wt.%), lower vapor pressure, and better solubility in diesel fuel. PODE₁ accounts for the highest, among PODE_n, heating value (22.4 MJ/kg), yet the lowest CN (29, 38), lower than DME (CN=55) or neat diesel fuel (CN=45-52). Research in CI engines has shown that adding PODE₁ and/or higher-order PODE_n to diesel fuel results in particle emission reduction and engine efficiency increase, positively affecting NO_x/PM tradeoff [4–6].

Auto-ignition (AI) study is crucial for modern CI-based propulsion (e.g., Homogeneous-Charge-CI (HCCI) [7], Reactivity-Controlled-CI (RCCI) engines [8], etc.). The current work extends our former numerical study [9] on the multi-stage (i.e., two-/three-stage) heat release of lean-to-rich AI of PODE₁/air mixtures. A widened scope of macro (i.e., global) AI-characteristics (compared to n-heptane) of *unusual three-stage heat release (3SHR) phenomenon* [9] (e.g., Fig 1), prevalent in *ultra-lean* AI, is examined. This work improves our understanding of *macro-dynamics* of PODE₁-3SHR in AI regimes, subjected to thermal and chemical feedback.

2. Computation and modeling methods

Similarly to preceding study [9], PODE₁/air combustion was simulated in CHEMKIN-PRO software at constant-volume adiabatic conditions. The premixed PODE₁/air charge was allowed to auto-ignite under predefined initial temperature (T_{in}), initial pressure (P_{in}) and equivalence ratio (φ). The following equations, designating the rate of change of instantaneous temperature (Eq. 1), pressure (Eq. 2), and the overall heat release (Eq. 3) inside the batch reactor, have been solved:

$$\frac{dT}{dt} = \left[R_u T \sum_{i} \dot{\omega}_i - \sum_i (\bar{h}_i \dot{\omega}_i) \right] / \sum_i \left[[X_i] (\bar{c}_{p,i} - R_u) \right] \tag{1}$$

$$\frac{dP}{dt} = R_u T \sum_i \dot{\omega}_i + R_u \sum_i [X_i] \frac{dT}{dt}$$
(2)

$$\frac{dQ}{dt} = -V \sum_{i=1}^{N} (h_i \dot{\omega}_i) M_i \tag{3}$$

where $\dot{\omega}_i$, \bar{h}_i , $\bar{c}_{p,i}$, $[X_i]$ and M_i are the production rates, specific molar enthalpies, constant-pressure specific heats, molar concentrations and molecular weights of species *i*, respectively; and R_u and *V* are the universal gas constant and the volume of batch reactor, respectively.

To elucidate the 3SHR macro-dynamics of PODE₁/air mixtures, an *initial-state sensitivity analysis* of two proposed sets of global (i.e., macro) HRR parameters: (1) the max/min values (according to stage: either 1st, 2nd or final; defined by *n*) (set #1), and (2) the in-between time-intervals (set #2), has been conducted (Table 1, Fig. 1). For these tasks, two PODE₁ mechanisms (by Jacobs et al. [10], Shrestha et al. [11]), found to most accurately represent lean PODE₁-AI [9], have been utilized. In addition, Zhang et al. [12] n-heptane mechanism was utilized for comparison purposes.

Table 1: Set matrix of proposed raw and normalized numerical PODE1 3SHR characteristics

	Set #	Utilized profile	Derived raw characteristics	Rate of change with T_{in}^*
Max/min HRR values and time-points	1	HRR(t)	$HRR^{n}_{min}, \tau^{n}_{min}_{max}$	$HRR_{max}^{n'}$, $ au_{max}^{n'}$
<i>Time intervals between the max/min HRR</i>	2		$\Delta t_{HRR_{max}}^{n}, \Delta t_{phase}^{n}$	$\Delta t_{HRR_{max}}^{n'}$, $\Delta t_{phase}^{n'}$

Note: * (·)'=-
$$d(\log (\cdot))/dT_{in}$$
;

Fig. 1. Volumetric heat release rate (HRR), instantaneous temperature and pressure of PODE₁/air mixture at $T_{in} = 800$ K, $P_{in} = 20$ bar and $\varphi = 0.2$, mechanism [10]. Max/min values of volumetric HRR: $HRR_{max,min}^n$ (a, b: x symbols), (2) corresponding time-points: $\tau_{max,min}^n$ (a, b), (3) intervals between HRR_{max}^n : $\Delta t_{HRR_{max}}^n$ (a), and (4) heat release phase times: Δt_{phase}^n (b), $n=1, 2, f(1^{\text{st}}, 2^{\text{nd}}, \text{final stage})$.

3. Results and discussion

The effect of T_{in} appears to be significant on $\Delta t_{HRR_{max}}^n$, Δt_{phase}^n , and HRR_{max}^n (or HRR_{min}^n), as shown in Fig. 2 (left). Briefly, the peak low-temperature heat release (LTHR) rate (Fig. 2a, \Box) (i) attains the highest values at the lower end of T_{in} (i.e., 600 K), (ii) might be accompanied by second peak (e.g., 700 K), and (iii) overall decays with T_{in} rise (\uparrow), as the LTHR activity decreases (\downarrow). Simultaneous patterns of *proximity*- and peak *amplitude*- \uparrow between and of, respectively, the former (Fig. 2a, \circ) and latter (Fig. 2a, \land) high-temperature heat-release (HTHR) stages are observed with T_{in} \uparrow , until both merge (indicating a typical 2-stage ignition behavior of reactive fuels). Notably, Fig. 2b clearly shows that the third stage is associated with prolonged CO₂ and H₂O formation (i.e., hydrogen-related, and CO-to-CO₂ chemistry).

Fig. 2. Volumetric HRR (a) of PODE₁/air mixtures for [10] at $T_{in} = 600-900$ K, $P_{in} = 20$ bar and $\varphi = 0.2$ and speciation (b) at 800 K. Max/min vHRRs: HRR_{max}^n (x symbols), corresp. time-points: τ_{max}^n (n=1, 2, f). HRR_{max}^l denoted by \Box , HRR_{max}^2 by \bigcirc and HRR_{max}^f by \triangle .

To further establish the effects of initial temperature T_{in} , pressure P_{in} and φ on the interrelationship patterns among the PODE₁ (and n-heptane) heat release prominences (*i*) the time periods (i.e., $\Delta t_{HRR_{max}}^n$), and (*ii*) logarithmic derivatives (with T_{in}) of corresponding-to- HRR_{max}^n time-points (i.e., τ_{max}^n), were plotted. Fig. 3 depicts these values obtained with mechanisms [10], [11] (for PODE₁: a, b) and [12] (for n-heptane: c).

Fig. 3 T_{in} , P_{in} and φ effects on decrease rate of τ_{max}^n with T_{in} (left columns: a, b, c) and $\Delta t_{HRR_{max}}^n$ (right columns: a, b, c) for PODE₁/air mixtures, mechanisms [10] (a), [11] (b) and of n-heptane/air mixtures [12] (c); for φ =0.2-0.5, P_{in} = 30 bar and T_{in} = 600-900 K (bold: red, orange, blue lines) and φ = 0.2, P_{in} = 10-40 bar and T_{in} = 600-900 K (dotted: gray lines).

It is clear from Fig. 3 (right columns) that φ has a strong effect on promoting the 3SHR phenomenon initially at any of examined T_{in} and P_{in} (i.e., simultaneous $\Delta t_{HRR_{max}}^{n=1,2,f}$ occurrence). The highest $\Delta t_{HRR_{max}}^{f}$ intervals (i.e., the 3rd-stage), obtained at $\varphi = 0.2$ for both fuels, decay with $\varphi \uparrow$ as expected (top sub-figures, red lines). $P_{in} \uparrow$ effect on $\Delta t_{HRR_{max}}^{f}$ periods is oppositely altered with $T_{in} \uparrow$ (top sub-figures, gray lines), favoring H₂O over CO₂ formation chemistry with $P_{in} \uparrow$ and $T_{in} \uparrow$, thus resulting in prolonged 3rd-stage interval.

Sensitivity analysis of $\tau_{max}^{2,f'}$ (Fig. 3, left columns) shows that $\varphi \uparrow$ and $P_{in} \uparrow$ effects are oppositely altered at certain T_{in} , preserving the direction of alteration. One can clearly notice that for PODE₁ no $\tau_{max}^{2,f'}$ values below 1 are present (i.e., lack of negative temperature coefficient (NTC) behavior), contrary to n-heptane. $\tau_{max}^{l'}$ perturbation shows that both fuels respond with oppositely altered direction as $\varphi \uparrow$, however with $P_{in} \uparrow$ the direction is preserved for n-heptane. Moreover, n-heptane shows close to linear slopes of $\tau_{max}^{l'}$ with $T_{in} \uparrow$, contrary to PODE₁. Interestingly, $\Delta t_{HRR_{max}}^2$ profiles (affected by $\tau_{max}^{l,2'}$ rates) exhibit a different behavior among the fuels with $T_{in} \uparrow$. For PODE₁, $\Delta t_{HRR_{max}}^2$ tend to execute a *negative parabolic* profile, with the peak-value-shift to a higher T_{in} as $\varphi \uparrow$. Contrary, for n-heptane $\Delta t_{HRR_{max}}^2$ either decay or show a positive parabolic profile, with the min-value-shift to a lower T_{in} as $\varphi \uparrow$. The differences are linked to dissimilar NTC behavior of both fuels.

4. Conclusions

The current paper presents initial numerical insights into macro-dynamics of *three-stage heat release phenomenon* of PODE₁/air propellant, subjected to ultra-lean spontaneous auto-ignition at moderate pressures and low-to-intermediate temperatures (i.e., T_{in} =600-900 K, P_{in} =10-40 bar, and $\varphi = 0.1$ -0.5). *The initial-state sensitivity analysis* of the heat release rate characteristic parameters (i.e., HRR_{max}^n and $\Delta t_{HRR_{max}}^n$) leads to the following conclusions:

- The peak LTHR rate (i) reaches the highest value at the lower end of T_{in} (i.e., 600 K), (ii) might be accompanied by the second peak, and (iii) overall decays with T_{in} rise, as the LTHR activity reduces.
- Simultaneous patterns of *proximity- and peak amplitude-rise* between and of, respectively, the former and latter HTHR stages are observed with *T_{in}* rise, until both merge (depicting a typical 2-stage heat release pattern).
- φ and T_{in} have a strong effect on promoting 3SHR phenomenon, both reduce $\Delta t_{HRR_{max}}^{f}$ values if increased.
- P_{in} rise exhibits contrary effect on $\Delta t_{HRR_{max}}^{f}$ with T_{in} rise, slightly favoring H₂O over CO₂ formation chemistry, resulting in prolonged 3rd-stage interval.
- $\Delta t_{HRR_{max}}^2$ profiles of PODE₁ and n-heptane fuels show *opposite trends* as T_{in} rises: the former shows negative and the latter positive parabolic $\Delta t_{HRR_{max}}^2(T_{in})$ profiles, affected by differences in NTC behavior of compared fuels.

Further research steps comprise a broader macro-dynamic and thermo-chemical (i.e., micro-dynamic) analysis of 3SHR-PODE₁ phenomenon to comprehensively elucidate its effect on potential lean combustion modes.

Acknowledgements

The authors gratefully acknowledge the financial support of the Israel Science Foundation (grant 2054/17).

References

- [1] Deutz S, Bongartz D, Heuser B, Kätelhön A, Schulze Langenhorst L, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A. Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment Energy CO2-based oxymethylene ether as fuel. Sci 2018;11:331-43. of а drop-in Environ https://doi.org/10.1039/C7EE01657C.
- [2] Sun R, Delidovich I, Palkovits R. Dimethoxymethane as a Cleaner Synthetic Fuel: Synthetic Methods, Catalysts, and Reaction Mechanism. ACS Catal 2019;9:1298–318. https://doi.org/10.1021/acscatal.8b04441.
- [3] Hank C, Lazar L, Mantei F, Ouda M, White RJ, Smolinka T, Schaadt A, Hebling C, Henning H. Comparative well-towheel life cycle assessment of OME3-5 synfuel production via the power-to-liquid pathway. Sustain Energy Fuels 2019;3:3219–33. https://doi.org/10.1039/c9se00658c.

- [4] Ren Y, Huang Z, Miao H, Di Y, Jiang D, Zeng K, Liu B, Wang X. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel 2008;87:2691–7. https://doi.org/https://doi.org/10.1016/j.fuel.2008.02.017.
- [5] Liu H, Wang Z, Wang J, He X, Zheng Y, Tang Q, Wang J. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends. Energy 2015;88:793–800. https://doi.org/10.1016/j.energy.2015.05.088.
- [6] García A, Monsalve-Serrano J, Villalta D, Fogué-Robles Á. Evaluating OMEx combustion towards stoichiometric conditions in a compression ignition engine. Fuel 2021;303:121273. https://doi.org/10.1016/J.FUEL.2021.121273.
- [7] Saxena S, Bedoya ID. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog Energy Combust Sci 2013;39:457–88. https://doi.org/10.1016/j.pecs.2013.05.002.
- [8] Eyal A, Thawko A, Baibikov V, Tartakovsky L. Performance and pollutant emission of the reforming-controlled compression ignition engine Experimental study. Energy Convers Manag 2021;237:114126. https://doi.org/10.1016/J.ENCONMAN.2021.114126.
- [9] Buntin D, Tartakovsky L. Heat release peculiarities of polyoxymethylene dimethyl ether 1 Part I: Effect of initial thermochemical conditions. Fuel 2022;321:124007. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124007.
- [10] Jacobs S, Döntgen M, Alquaity ABS, Kopp WA, Kröger LC, Burke U, Pitsch H, Leonhard K, Curran H, Heufer K. Detailed kinetic modeling of dimethoxymethane. Part II: Experimental and theoretical study of the kinetics and reaction mechanism. Combust Flame 2019;205:522–33. https://doi.org/10.1016/j.combustflame.2018.12.026.
- [11] Shrestha KP, Eckart S, Elbaz AM, Giri BR, Fritsche C, Seidel L, Roberts W, Krause H, Mauss F. A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NOx interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature. Combust Flame 2020;218:57–74. https://doi.org/10.1016/j.combustflame.2020.04.016.
- [12] Zhang K, Banyon C, Bugler J, Curran HJ, Rodriguez A, Herbinet O, Battin-Leclerc F, B'Chir C, Heufer K. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust Flame 2016;172:116–35. https://doi.org/https://doi.org/10.1016/j.combustflame.2016.06.028.