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Abstract – In this paper, the volume averaging method is applied to an unconsolidated granular medium with a two-phase 
boiling flow and an internal heat source in the solid. The main steps of the theoretical derivation of the macroscopic averaged 
conservation equations and their closure problems are given. The main contributions of this work concern the mobile 
character of the solid phase and the vapour flow rate due to boiling. A closure for the vapour flow rate is also proposed. 
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1. Introduction 

The French strategy to mitigate severe accidents in a Sodium cooled Fast neutron Reactor (SFR) relies on relocating the 
molten core material (corium) below the core region as quickly as possible, where a dedicated safety device, the core catcher, 
collects them to protect the primary vessel [1]. It is widely accepted [2] [3] that the incoming liquid corium would be 
fragmented into solid particles when it arrives in the lower plenum due to violent interactions with the coolant (liquid 
sodium). When these fragments settle, they form a so-called debris bed [3], which essentially contains fuel and steel particles. 
The decay heat of the fission products, volumetrically released in the fuel particles, must be evacuated from the medium in 
order to ensure its cooling and geometrical stabilization, i.e. to avoid re-melting of the debris and to protect the core-catcher 
and the primary vessel. Furthermore, it is important to evaluate whether the debris bed can reach a configuration that induces 
a positive neutron reactivity, and if so, what can be done to avoid this. For all these reasons, it is important to quantitatively 
study the behaviour of the debris bed, which implies the description of the following phenomena: heat transfer between 
particles and sodium, sodium vaporization and debris transport, leading to the so-called “self-levelling” effect [4]. 

A convenient way to reach this objective consists in considering the debris bed as an unconsolidated granular medium 
with an internal heat source exchanging with an intern boiling flow of sodium. The intrinsic complexity of this problem 
requires homogenized equations obtained by use of an up-scaling method. Among the existing methods, the volume 
averaging has been successfully applied to the description of single-phase viscous and inertial flows [5], multi-phase viscous 
[6] and inertial [7] flows, heat and mass transfers [8] in fixed porous media, and dense particle flows in single phase viscous 
flows [9]. However, the more complex situation of particles entrainment by a multi-phase boiling flow has not received the 
same attention in the literature. This work constitutes a first attempt to address this problem, by investigating the possible 
form of the macroscopic equations and the required closure relations. The theoretical derivation of the macroscopic 
conservation equations is presented, taking into account the particularity of the mobility of the solid phase (particles) and the 
transfers between the liquid and the gas phases (boiling). 

 
2. Theoretical Background: Volume Averaging Method 

This paper uses the averaging operators as defined in [7] [8] [9]. The Volume Averaging method consists in applying 
the operator of the Eq. (1) to the local boundary value problem to obtain the unclosed macroscopic equations. The most 
important relations are the theorems relative to the average of the temporal and spatial derivatives Eqs. (2) and (3) and the 
similar one for vector quantities [10]. In a second step the local and averaged scales are separated by introducing the so-
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called Gray decomposition [11] Eq. (4). Closure problems, at the scale of the deviation, are derived to close the macroscopic 
equations. 
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𝐴𝐴𝑘𝑘
 (3)    

𝜓𝜓𝑘𝑘 = 〈𝜓𝜓𝑘𝑘〉𝑘𝑘 + 𝜓𝜓𝑘𝑘�
𝑘𝑘
 (4)    

 
where 𝜓𝜓𝑘𝑘 is a scalar quantity of the phase 𝑘𝑘, 〈𝜓𝜓𝑘𝑘〉 and 〈𝜓𝜓𝑘𝑘〉𝑘𝑘 represent respectively the superficial and intrinsic averages of 
𝜓𝜓𝑘𝑘 quantity, 𝜓𝜓𝑘𝑘�

𝑘𝑘
 the deviation of the local value of 𝜓𝜓𝑘𝑘 to the intrinsic average 〈𝜓𝜓𝑘𝑘〉𝑘𝑘, 𝜕𝜕 is the time. 𝑉𝑉 is the control volume. 

It is a Representative Elementary Volume (REV) as represented in Fig. 1. 𝑉𝑉𝑘𝑘 and 𝑑𝑑𝑘𝑘 are respectively the control volume and 
the interface area of the phase 𝑘𝑘, 𝐧𝐧𝑘𝑘 is the normal vector oriented towards the outside of phase 𝑘𝑘. 𝜀𝜀𝑘𝑘 = 𝑉𝑉𝑘𝑘

𝑉𝑉
 is the volume 

occupation rate of the phase 𝑘𝑘 and 𝐰𝐰𝑘𝑘 is the interfacial velocity. 
 

 
Fig. 1: Schema of the system’s representative elementary volume (REV) [7] 

 
3. Application to the debris bed 
3.1. Local boundary-value problem 

The local boundary value problem represents two incompressible, immiscible, Newtonian fluids, exchanging heat and 
mass through their interface, to model the liquid (𝑙𝑙) and vapour (𝑔𝑔) sodium and a third incompressible, immiscible, 
Newtonian pseudo-fluid [9] with a volumetric heat source term representing the solid particles (𝑠𝑠) considering local thermal 
non-equilibrium. The conservation equations for mass Eq. (5), momentum Eq. (6), and energy Eq. (7), and the associated 
boundary conditions Eqs. (8) - (16) are the following:  

 
∇ ∙ 𝐯𝐯𝑘𝑘 = 0 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (5)   
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∇2𝐯𝐯𝑘𝑘 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (6)   
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∇2𝛩𝛩𝑘𝑘 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (7)   
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𝜌𝜌𝑙𝑙�𝐰𝐰𝑙𝑙𝑙𝑙 − 𝐯𝐯𝑙𝑙�.𝐧𝐧𝑙𝑙𝑙𝑙 = −𝜌𝜌𝑙𝑙�𝐰𝐰𝑙𝑙𝑙𝑙 − 𝐯𝐯𝑙𝑙�.𝐧𝐧𝑙𝑙𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑙𝑙 on 𝑑𝑑𝑙𝑙𝑙𝑙  (8)    
𝐯𝐯𝑙𝑙 = 𝐯𝐯𝑙𝑙 on 𝑑𝑑𝑙𝑙𝑙𝑙  (9)   
𝐰𝐰𝑓𝑓𝑓𝑓 = 𝐯𝐯𝑓𝑓 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (10)    
𝐰𝐰𝑓𝑓𝑓𝑓 = 𝐯𝐯𝑓𝑓 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (11)   

𝜑𝜑𝑙𝑙𝑙𝑙�𝐯𝐯𝑙𝑙 − 𝐯𝐯𝑙𝑙� + 𝑃𝑃𝑙𝑙𝐧𝐧𝑙𝑙𝑙𝑙 − 𝜂𝜂𝑙𝑙�∇𝐯𝐯𝑙𝑙 + ∇𝐯𝐯𝑙𝑙𝑇𝑇�.𝐧𝐧𝑙𝑙𝑙𝑙 + 𝑃𝑃𝑙𝑙𝐧𝐧𝑙𝑙𝑙𝑙 − 𝜂𝜂𝑙𝑙�∇𝐯𝐯𝑙𝑙 + ∇𝐯𝐯𝑙𝑙𝑇𝑇�.𝐧𝐧𝑙𝑙𝑙𝑙 = 𝒯𝒯𝑙𝑙𝑙𝑙𝐻𝐻𝑙𝑙𝑙𝑙𝐧𝐧𝑙𝑙𝑙𝑙 on 𝑑𝑑𝑙𝑙𝑙𝑙  (12)   
𝑃𝑃𝑓𝑓𝐧𝐧𝑓𝑓𝑓𝑓 − 𝜂𝜂𝑓𝑓�∇𝐯𝐯𝑓𝑓 + ∇𝐯𝐯𝑓𝑓𝑇𝑇�.𝐧𝐧𝑓𝑓𝑓𝑓 + 𝑃𝑃𝑓𝑓𝐧𝐧𝑓𝑓𝑓𝑓 − 𝜂𝜂𝑓𝑓�∇𝐯𝐯𝑓𝑓 + ∇𝐯𝐯𝑓𝑓𝑇𝑇�.𝐧𝐧𝑓𝑓𝑓𝑓 = 𝒯𝒯𝑓𝑓𝑓𝑓𝐻𝐻𝑓𝑓𝑓𝑓𝐧𝐧𝑓𝑓𝑓𝑓 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (13)   

𝛩𝛩𝑓𝑓 = 0 on 𝑑𝑑𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (14)   
𝛩𝛩𝑓𝑓 = 𝛩𝛩𝑓𝑓 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (15)   

𝜆𝜆𝑓𝑓∇𝛩𝛩𝑓𝑓 .𝐧𝐧𝑓𝑓𝑓𝑓 + 𝜆𝜆𝑓𝑓∇𝛩𝛩𝑓𝑓.𝐧𝐧𝑓𝑓𝑓𝑓 = 0 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (16)   
−∆ℎ𝑣𝑣𝑣𝑣𝑝𝑝𝜑𝜑𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙∇𝛩𝛩𝑙𝑙 .𝐧𝐧𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙∇𝛩𝛩𝑙𝑙.𝐧𝐧𝑙𝑙𝑙𝑙 = 0 on 𝑑𝑑𝑙𝑙𝑙𝑙  (17)   

 
where 𝐯𝐯𝑘𝑘 is the velocity of phase 𝑘𝑘, 𝐠𝐠 is the gravity acceleration, 𝜌𝜌𝑘𝑘  is the density, 𝑃𝑃𝑘𝑘 is the pressure, 𝜂𝜂𝑘𝑘 is the dynamic 
viscosity, 𝐶𝐶𝑝𝑝𝑘𝑘 is the specific heat capacity and 𝜆𝜆𝑘𝑘 is the thermal conductivity. 𝜅𝜅𝑘𝑘 is the thermal dilatation coefficient of the 
phase 𝑘𝑘 supposed linear in relative temperature, following the so-called Boussinesq approximation [12], with 𝜅𝜅𝑓𝑓 = 1 as the 
dilatation of the solid phase is neglected. 𝑄𝑄𝑘𝑘 is the specific heat source, with 𝑄𝑄𝑙𝑙 = 𝑄𝑄𝑙𝑙 = 0 W.kg-1. The energy conservation 
is written in terms of the difference between the phase temperature and the saturation temperature of the sodium 𝑇𝑇𝑓𝑓𝑣𝑣𝑠𝑠,       
𝛩𝛩𝑘𝑘 = 𝑇𝑇𝑘𝑘 − 𝑇𝑇𝑓𝑓𝑣𝑣𝑠𝑠. 𝜑𝜑𝑙𝑙𝑙𝑙 is the mass flux at the gas-liquid interface due to phase change. 𝑑𝑑𝑘𝑘𝑘𝑘′ is the area of the interface between 
the phases 𝑘𝑘 and 𝑘𝑘′. The surface tension between the phases 𝑘𝑘 and 𝑘𝑘′ is 𝒯𝒯𝑘𝑘𝑘𝑘′ and 𝐻𝐻𝑘𝑘𝑘𝑘′ is the mean curvature of this interface. 
∆ℎ𝑣𝑣𝑣𝑣𝑝𝑝 is the latent heat of vaporisation of the sodium. 
 
3.2. Non-closed averaged equations & Deviation problem 

Following the Volume Averaging method, similarly to the proposition of Lasseux et al. [7] and Duval et al. [8], the 
volume average operator (Eq. (1)) is applied to the precedent local boundary-value problem (Eqs. (5), (6) and (7)). Then the 
Gray decomposition (Eq. (4)) is introduced to derive the non-closed averaged conservation equations (Eqs. (18), (19) and 
(20) hereafter). It is written under the assumptions that physical properties are uniform on the REV, that phase change occurs 
uniformly on all the liquid-gas interface, and that conditions of Eqs. (21) and (22) are verified. 
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𝜌𝜌𝑘𝑘�𝐯𝐯𝑘𝑘�
𝑘𝑘�𝑙𝑙𝑘𝑘

𝜂𝜂𝑘𝑘
𝑙𝑙𝑘𝑘
𝐿𝐿𝜀𝜀𝑘𝑘

≪ 1 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (21)   

𝐶𝐶𝑝𝑝𝑘𝑘𝜌𝜌𝑘𝑘�𝐯𝐯𝑘𝑘�
𝑘𝑘�𝑙𝑙𝑘𝑘

𝜆𝜆𝑘𝑘
𝑙𝑙𝑘𝑘
𝐿𝐿𝜀𝜀𝑘𝑘

≪ 1 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (22)   

 
where 𝛿𝛿𝑘𝑘𝑘𝑘′ is the Kronecker symbol, �̇�𝑚𝑙𝑙𝑙𝑙 = 1

𝑉𝑉∬ 𝜑𝜑𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑
 
𝐴𝐴𝑙𝑙𝑙𝑙

 is the volumetric boiling rate, 𝑑𝑑𝑘𝑘 = ⋃ 𝑑𝑑𝑘𝑘𝑘𝑘′𝑘𝑘′≠𝑘𝑘  with 𝑑𝑑𝑘𝑘𝑘𝑘′ the 
interfacial area between the phase 𝑘𝑘 and 𝑘𝑘′. 𝐰𝐰𝑘𝑘𝑘𝑘′ = −𝐰𝐰𝑘𝑘′𝑘𝑘 is the velocity of the interface between the phase 𝑘𝑘 and 𝑘𝑘′ and 
𝐧𝐧𝑘𝑘𝑘𝑘′ the normal vector to this interface oriented outside of the phase 𝑘𝑘. 𝑙𝑙𝑘𝑘 is the characteristic pore-scale length and 𝐿𝐿 is the 
characteristic length of the system. ‖  ‖ is the vector norm. 

There are some differences in these conservation equations compared to precedent works [7] [8]. As the phase change 
between the liquid and gas phases is considered, (𝐰𝐰𝑘𝑘𝑘𝑘′ − 𝐯𝐯𝑘𝑘) on 𝑑𝑑𝑙𝑙𝑙𝑙 is not zero. The Brinkman’s terms in the momentum 
balance equation (Eq. (19)) and an analogous one in the energy balance equation (Eq. (20)),  often considered as negligible 
inside the medium, are kept because they may become significant at the boundary of the medium (i.e. at the surface of the 
heap), which is a zone of interest to simulate the self-levelling.  

Eqs. (18), (19) and (20) depend on the deviation quantities, so the scales are not yet separated, and the averaged problem 
is unclosed. Alongside the averaged equations, the difference between the averaged equations and the local boundary value 
problem results in the deviation problem. Eqs. (23), (24) and (25) figure the conservation equations in this problem, under 
the following assumption: i) the terms relative to the mass exchange by sodium boiling, too complex, are neglected at the 
scale of the deviation problem; and ii) the effect of the thermal dilatation is neglected at the local scale. Those hypothesis are 
generally considered in the literature [8]. 
 

∇ ∙ 𝐯𝐯𝑘𝑘�
𝑘𝑘 = 0 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (23)   

𝜀𝜀𝑘𝑘𝐯𝐯𝑘𝑘∇ ∙ 𝐯𝐯𝑘𝑘�
𝑘𝑘 = −

ε𝑘𝑘
𝜌𝜌𝑘𝑘
∇𝑃𝑃𝑘𝑘�

𝑘𝑘 + ε𝑘𝑘
𝜂𝜂𝑘𝑘
𝜌𝜌𝑘𝑘
∇2𝐯𝐯𝑘𝑘�

𝒌𝒌 −
1
𝑉𝑉
��−

1
𝜌𝜌𝑘𝑘
𝑃𝑃𝑘𝑘�

𝑘𝑘𝐧𝐧𝑘𝑘𝑘𝑘′ +
𝜂𝜂𝑘𝑘
𝜌𝜌𝑘𝑘
�∇𝐯𝐯𝑘𝑘�

𝑘𝑘�.𝐧𝐧𝑘𝑘𝑘𝑘′� 𝑑𝑑𝑑𝑑
 

𝐴𝐴𝑘𝑘

 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (24)   

𝐶𝐶𝑝𝑝𝑘𝑘 �𝜀𝜀𝑘𝑘𝐯𝐯𝑘𝑘.∇𝛩𝛩𝑘𝑘�
𝑘𝑘 + 𝜀𝜀𝑘𝑘𝒗𝒗𝑘𝑘�

𝑘𝑘.∇〈𝛩𝛩𝑘𝑘〉𝑘𝑘� =
𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘
𝜀𝜀𝑘𝑘∇2𝛩𝛩𝑘𝑘�

𝑘𝑘 −
1
𝑉𝑉

 �
𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘
∇𝛩𝛩𝑘𝑘�

𝑘𝑘 .𝐧𝐧𝑘𝑘𝑘𝑘′𝑑𝑑𝑑𝑑
 

𝐴𝐴𝑘𝑘

 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (25)   

 
According to work of Lasseux et al. [7], and within the conditions represented by Eqs. (26) and (27), the averaged 

pressures and the superficial tension compensate each other. Furthermore, if the inequality Eq. (28) is verified, then the 
viscous dissipation due to the averaged part of the velocities at the interface is negligible. 

 
𝜂𝜂𝑘𝑘
𝒯𝒯𝑘𝑘𝑘𝑘′

〈�∇𝐯𝐯𝑘𝑘�
𝑘𝑘�〉𝑘𝑘𝑘𝑘′

〈𝐻𝐻𝑘𝑘𝑘𝑘′〉𝑘𝑘𝑘𝑘′
= 𝐶𝐶𝐶𝐶𝑘𝑘

〈�∇𝐯𝐯𝑘𝑘�
𝑘𝑘�〉𝑘𝑘𝑘𝑘′

〈𝐻𝐻𝑘𝑘𝑘𝑘′〉𝑘𝑘𝑘𝑘′‖〈𝐯𝐯𝑘𝑘〉𝑘𝑘‖
≪ 1 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (26)   

𝜌𝜌𝑘𝑘𝑙𝑙𝑘𝑘
𝒯𝒯𝑘𝑘𝑘𝑘′

〈�𝐯𝐯𝑘𝑘.∇𝐯𝐯𝑘𝑘�
𝑘𝑘�〉𝑘𝑘𝑘𝑘′

〈𝐻𝐻𝑘𝑘𝑘𝑘′〉𝑘𝑘𝑘𝑘′
= W𝑒𝑒𝑘𝑘

〈�𝐯𝐯𝑘𝑘.∇𝐯𝐯𝑘𝑘�
𝑘𝑘�〉𝑘𝑘𝑘𝑘′

〈𝐻𝐻𝑘𝑘𝑘𝑘′〉𝑘𝑘𝑘𝑘′‖〈𝐯𝐯𝑘𝑘〉𝑘𝑘‖2
≪ 1 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (27)   

�〈𝐯𝐯𝑘𝑘〉𝑘𝑘�
𝑙𝑙𝑘𝑘
𝐿𝐿
≪ �𝐯𝐯𝑘𝑘�

𝑘𝑘� 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (28)   

 
where 〈𝜓𝜓𝑘𝑘〉𝑘𝑘𝑘𝑘′ refers to the surface averaging on the interface area 𝑑𝑑𝑘𝑘𝑘𝑘′ of 𝜓𝜓𝑘𝑘. 𝐶𝐶𝐶𝐶𝑘𝑘 is the capillary number considering the  
average velocity and W𝑒𝑒𝑘𝑘 is the Weber number based on the average velocity for the phase 𝑘𝑘. 

Under these conditions the boundary conditions associated to the deviation problem are: 
 



 
 

 
 

 
 

 
ICMFHT 106-5 

𝐯𝐯𝑘𝑘�
𝑘𝑘 = 𝐯𝐯𝑘𝑘′�

𝑘𝑘′ − �〈𝐯𝐯𝑘𝑘〉𝑘𝑘 − 〈𝐯𝐯𝑘𝑘′〉𝑘𝑘′� on 𝑑𝑑𝑘𝑘𝑘𝑘′ 
𝑘𝑘,𝑘𝑘′ = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 

𝑘𝑘 ≠ 𝑘𝑘′ (29)   

�𝑃𝑃𝑘𝑘�
𝑘𝑘 − 𝑃𝑃𝑘𝑘′�

𝑘𝑘′�𝐧𝐧𝑘𝑘𝑘𝑘′ − 𝜂𝜂𝑘𝑘 �∇𝐯𝐯𝑘𝑘�
𝑘𝑘 + ∇𝐯𝐯𝑘𝑘�

𝑘𝑘𝑇𝑇� .𝐧𝐧𝑘𝑘𝑘𝑘′ − 𝜂𝜂𝑘𝑘′ �∇𝐯𝐯𝑘𝑘′�
𝑘𝑘′ + ∇𝐯𝐯𝑘𝑘′�

𝑘𝑘′𝑇𝑇� .𝐧𝐧𝑘𝑘′𝑘𝑘 = 0 on 𝑑𝑑𝑘𝑘𝑘𝑘′ 
𝑘𝑘,𝑘𝑘′ = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 

𝑘𝑘 ≠ 𝑘𝑘′ (30)   

𝛩𝛩𝑓𝑓�
𝑓𝑓 = −〈𝛩𝛩𝑓𝑓〉𝑓𝑓 on 𝑑𝑑𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (31)   

𝛩𝛩𝑓𝑓�
𝑓𝑓 = 𝛩𝛩𝑓𝑓�

𝑓𝑓 − �〈𝛩𝛩𝑓𝑓〉𝑓𝑓 − 〈𝛩𝛩𝑓𝑓〉𝑓𝑓� on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (32)   

�𝜆𝜆𝑓𝑓∇𝛩𝛩𝑓𝑓�
𝑓𝑓 − 𝜆𝜆𝑓𝑓∇𝛩𝛩𝑓𝑓�

𝑓𝑓 + 𝜆𝜆𝑓𝑓∇〈𝛩𝛩𝑓𝑓〉𝑓𝑓 − 𝜆𝜆𝑓𝑓∇〈𝛩𝛩𝑓𝑓〉𝑓𝑓� .𝐧𝐧𝑓𝑓𝑓𝑓 = 0 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (33)   
 

3.3. Closure 
To finally separate the macroscopic and pore-scale effects, linear relations are assumed between the deviations and the 

averaged quantities which are the sources of the deviation problem. In our problem, the sources are the averaged velocities, 
the averaged relative temperatures and the gradients of the averaged temperatures. The linearity coefficients are called the 
closure variables. Under condition that dynamic and thermodynamic effects are separated [8], the closure relations are the 
following: 

 
𝐯𝐯𝑘𝑘�

𝑘𝑘 = � 𝐶𝐶𝑘𝑘𝑘𝑘����. 〈𝐯𝐯𝑗𝑗〉𝑗𝑗
𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (34)   

𝑃𝑃𝑘𝑘�
𝑘𝑘 = � 𝜂𝜂𝑘𝑘𝐛𝐛kj. 〈𝐯𝐯𝑗𝑗〉

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓
 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (35)   

𝛩𝛩𝑘𝑘�
𝑘𝑘 = � 𝑐𝑐𝑘𝑘𝑗𝑗〈𝛩𝛩𝑗𝑗〉𝑗𝑗

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓
+ � 𝐝𝐝kj.∇〈𝛩𝛩𝑗𝑗〉𝑗𝑗

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓
 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (36)   

 
where 𝐶𝐶𝑘𝑘𝑘𝑘���� and 𝐛𝐛𝑘𝑘𝑗𝑗 are respectively the closure variables for the velocity deviations and the pressure deviations of phase 𝑘𝑘 
associated to the averaged velocity of the phase 𝑗𝑗. 𝑐𝑐𝑘𝑘𝑗𝑗 and 𝐝𝐝𝑘𝑘𝑗𝑗 are the closure variables for the deviation of the relative 
temperatures of the phase 𝑘𝑘, respectively associated to the averaged relative temperature of the phase 𝑗𝑗 and their gradient. 

The closure variables may be determined by resolving the closure problems. One closure problem per source is written 
by injecting closure relations Eqs. (34), (35) and (36) into the deviation problem Eqs. (23), (24), (25) and their boundary 
conditions Eqs. (29) - (33). 

The closure problem associated to the averaged velocity of the phase 𝑗𝑗 is the following: 
 

∇ ∙ 𝐶𝐶𝑘𝑘𝑘𝑘���� = 0  𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (37)   

𝜌𝜌𝑘𝑘
𝜂𝜂𝑘𝑘
𝐯𝐯𝑘𝑘.𝛻𝛻𝐶𝐶𝑘𝑘𝑘𝑘���� = −∇𝐛𝐛kj + ∇2𝐶𝐶𝑘𝑘𝑘𝑘���� −

1
𝑉𝑉𝑘𝑘
�𝐧𝐧𝑘𝑘𝑘𝑘′ . �−𝐼𝐼�̿�𝐛kj + ∇𝐶𝐶𝑘𝑘𝑘𝑘�����𝑑𝑑𝑑𝑑

 

𝐴𝐴𝑘𝑘

  𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (38)   

𝐶𝐶𝑘𝑘𝑘𝑘���� = 𝐶𝐶𝑘𝑘′𝑘𝑘����� − �𝛿𝛿𝑗𝑗𝑘𝑘 − 𝛿𝛿𝑗𝑗𝑘𝑘′�𝐼𝐼 ̿ on 𝑑𝑑𝑘𝑘𝑘𝑘′ 
𝑘𝑘,𝑘𝑘′ = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 

𝑘𝑘 ≠ 𝑘𝑘′ (39)   

𝐧𝐧𝑘𝑘𝑘𝑘′. �𝜂𝜂𝑘𝑘 �𝐼𝐼�̿�𝐛kj − �∇𝐶𝐶𝑘𝑘𝑘𝑘���� + ∇𝐶𝐶𝑘𝑘𝑘𝑘����𝑇𝑇�� − 𝜂𝜂𝑘𝑘′ �𝐼𝐼�̿�𝐛k′j − �∇𝐶𝐶𝑘𝑘′𝑘𝑘����� + ∇𝐶𝐶𝑘𝑘′𝑘𝑘�����𝑇𝑇��� = 0 on 𝑑𝑑𝑘𝑘𝑘𝑘′ 
𝑘𝑘,𝑘𝑘′ = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 

𝑘𝑘 ≠ 𝑘𝑘′ (40)   
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The closure problem associated to the averaged relative temperature of the phase 𝑗𝑗 is the following: 
 

𝜌𝜌𝑘𝑘𝐶𝐶𝑝𝑝𝑘𝑘
𝜆𝜆𝑘𝑘

𝐯𝐯𝑘𝑘.∇𝑐𝑐𝑘𝑘𝑗𝑗 = ∇2𝑐𝑐𝑘𝑘𝑗𝑗 −
1
𝑉𝑉𝑘𝑘

 �∇𝑐𝑐𝑘𝑘𝑗𝑗.𝐧𝐧𝑘𝑘𝑘𝑘′𝑑𝑑𝑑𝑑
 

𝐴𝐴𝑘𝑘

  𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (41)  

𝑐𝑐𝑓𝑓𝑗𝑗 = −𝛿𝛿𝑗𝑗𝑓𝑓 on 𝑑𝑑𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (42)  

𝑐𝑐𝑓𝑓𝑗𝑗 = 𝑐𝑐𝑓𝑓𝑗𝑗 − �𝛿𝛿𝑗𝑗𝑓𝑓 − 𝛿𝛿𝑗𝑗𝑓𝑓� on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (43)  

�𝜆𝜆𝑓𝑓∇𝑐𝑐𝑓𝑓𝑗𝑗 − 𝜆𝜆𝑓𝑓∇𝑐𝑐𝑓𝑓𝑗𝑗�.𝒏𝒏𝑓𝑓𝑓𝑓 = 0 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (44)  
 

The closure problem associated to the gradient of the averaged temperature of the phase 𝑗𝑗 is the following: 
 

𝜌𝜌𝑘𝑘𝐶𝐶𝑝𝑝𝑘𝑘
𝜆𝜆𝑘𝑘

�𝐯𝐯𝑘𝑘.∇𝐝𝐝𝑘𝑘𝑗𝑗 + 𝛿𝛿𝑗𝑗𝑘𝑘𝐯𝐯𝑘𝑘�
𝑘𝑘� = ∇2𝐝𝐝𝑘𝑘𝑗𝑗 −

1
𝑉𝑉𝑘𝑘

 �𝐧𝐧𝑘𝑘𝑘𝑘′ .∇𝐝𝐝𝑘𝑘𝑗𝑗𝑑𝑑𝑑𝑑
 

𝐴𝐴𝑘𝑘

  𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (45)   

𝐝𝐝𝑓𝑓𝑗𝑗 = 0 on 𝑑𝑑𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (46)   

𝐝𝐝𝑓𝑓𝑗𝑗 = 𝐝𝐝𝑓𝑓𝑗𝑗 on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (47)   

𝜆𝜆𝑓𝑓�𝛿𝛿𝑗𝑗𝑓𝑓 + ∇𝐝𝐝𝑓𝑓𝑗𝑗� = 𝜆𝜆𝑓𝑓�𝛿𝛿𝑗𝑗𝑓𝑓 + ∇𝐝𝐝𝑓𝑓𝑗𝑗� on 𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓 = 𝑙𝑙,𝑔𝑔 (48)   
 

Finally, injecting the closure relations Eqs. (34), (35) and (36) into the unclosed averaged conservation equations 
Eqs. (18), (19) and (20) result in the macroscopic conservation equations: 

 
𝜕𝜕𝜀𝜀𝑘𝑘
𝜕𝜕𝜕𝜕

+ ∇ ∙ �𝜀𝜀𝑘𝑘〈𝐯𝐯𝑘𝑘〉𝑘𝑘� = (𝛿𝛿𝑘𝑘𝑙𝑙 − 𝛿𝛿𝑘𝑘𝑙𝑙)
1
𝜌𝜌𝑘𝑘
�̇�𝑚𝑙𝑙𝑙𝑙 𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (49)   

𝜀𝜀𝑘𝑘
𝜕𝜕〈𝐯𝐯𝑘𝑘〉𝑘𝑘

𝜕𝜕𝜕𝜕
+ �𝜀𝜀𝑘𝑘〈𝐯𝐯𝑘𝑘〉𝑘𝑘.∇�〈𝐯𝐯𝑘𝑘〉𝑘𝑘

= 𝜀𝜀𝑘𝑘〈𝜅𝜅𝑘𝑘〉𝑘𝑘𝐠𝐠 −
𝜀𝜀𝑘𝑘
𝜌𝜌𝑘𝑘
𝛻𝛻〈𝑃𝑃𝑘𝑘〉𝑘𝑘 +

𝜂𝜂𝑘𝑘
𝜌𝜌𝑘𝑘
𝛻𝛻2�𝜀𝜀𝑘𝑘〈𝐯𝐯𝑘𝑘〉𝑘𝑘� −

𝜂𝜂𝑘𝑘
𝜌𝜌𝑘𝑘
𝛻𝛻〈𝐯𝐯𝑘𝑘〉𝑘𝑘.𝛻𝛻𝜀𝜀𝑘𝑘 + (𝛿𝛿𝑘𝑘𝑙𝑙 + 𝛿𝛿𝑘𝑘𝑙𝑙) � 〈𝐯𝐯𝑗𝑗〉𝑗𝑗

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

.𝐸𝐸𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙�����

+
𝜂𝜂𝑘𝑘
𝜌𝜌𝑘𝑘

� 〈𝐯𝐯𝑗𝑗〉𝑗𝑗
𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

.𝑑𝑑𝑘𝑘𝑘𝑘����� 

𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (50)   

𝐶𝐶𝑝𝑝𝑘𝑘 �𝜀𝜀𝑘𝑘
𝜕𝜕〈𝛩𝛩𝑘𝑘〉𝑘𝑘

𝜕𝜕𝜕𝜕
+ 𝜀𝜀𝑘𝑘〈𝐯𝐯𝑘𝑘〉𝑘𝑘.∇〈𝛩𝛩𝑘𝑘〉𝑘𝑘�

= −�𝛿𝛿𝑘𝑘𝑙𝑙 − 𝛿𝛿𝑘𝑘𝑙𝑙�
𝐶𝐶𝑝𝑝𝑘𝑘〈𝛩𝛩𝑘𝑘〉𝑘𝑘

𝜌𝜌𝑘𝑘
�̇�𝑚𝑙𝑙𝑙𝑙 + 𝜀𝜀𝑘𝑘𝑄𝑄𝑘𝑘 +

𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘
∇2�𝜀𝜀𝑘𝑘〈𝛩𝛩𝑘𝑘〉𝑘𝑘� −

𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘
∇𝜀𝜀𝑘𝑘 .∇〈𝛩𝛩𝑘𝑘〉𝑘𝑘

+
𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘

� 〈𝛩𝛩𝑗𝑗〉𝑗𝑗𝐶𝐶𝑘𝑘𝑗𝑗
𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

+
𝜆𝜆𝑘𝑘
𝜌𝜌𝑘𝑘

� ∇〈𝛩𝛩𝑗𝑗〉𝑗𝑗.𝐃𝐃𝑘𝑘𝑗𝑗
𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

 

𝑘𝑘 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (51)   

 
where 𝑑𝑑𝑘𝑘𝑘𝑘�����,𝐸𝐸𝑘𝑘𝑘𝑘

𝑙𝑙𝑙𝑙�����,𝐶𝐶𝑘𝑘𝑗𝑗 and 𝐃𝐃𝑘𝑘𝑗𝑗 are the macroscopic closures for the phase 𝑘𝑘 associated to the phase 𝑗𝑗, which are the effective 
properties of the medium. For a system with 3 phases 𝑙𝑙, 𝑔𝑔 and 𝑠𝑠, each “family” of terms includes 9 terms (3 × 3), resulting 
in 36 macroscopic closures,  that may be determined by applying the following expressions to the solutions of the previously 
presented closure problems: 
 



 
 

 
 

 
 

 
ICMFHT 106-7 

𝑑𝑑𝑘𝑘𝑘𝑘����� = �𝐧𝐧𝑘𝑘𝑘𝑘′ . �−𝐼𝐼�̿�𝐛𝑘𝑘𝑗𝑗 + ∇𝐶𝐶𝑘𝑘𝑘𝑘�����𝑑𝑑𝑑𝑑
 

𝐴𝐴𝑘𝑘

 𝑘𝑘, 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (52)  

𝐸𝐸𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙����� = ��(𝐰𝐰𝑘𝑘𝑘𝑘′ − 𝐯𝐯𝑘𝑘).𝐧𝐧𝑘𝑘𝑘𝑘′�𝐶𝐶𝑘𝑘𝑘𝑘����

 

𝐴𝐴𝑘𝑘

𝑑𝑑𝑑𝑑 𝑘𝑘, 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (53)  

𝐶𝐶𝑘𝑘𝑗𝑗 =
1
𝑉𝑉
�∇𝑐𝑐𝑘𝑘𝑗𝑗.𝐧𝐧𝑘𝑘𝑘𝑘′𝑑𝑑𝑑𝑑

 

𝐴𝐴𝑘𝑘

 𝑘𝑘, 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (54)  

𝐃𝐃𝑘𝑘𝑗𝑗 =
1
𝑉𝑉
�𝐧𝐧𝑘𝑘𝑘𝑘′ .∇𝐝𝐝𝑘𝑘𝑗𝑗𝑑𝑑𝑑𝑑

 

𝐴𝐴𝑘𝑘

 𝑘𝑘, 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (55)  

 
To complete this problem, in addition to the boundary conditions, the expression of the boiling rate �̇�𝑚𝑙𝑙𝑙𝑙 as a function of 

the medium’s characteristics is derived, according to Duval et al. [8], by averaging Eq. (17) on the interfacial area 𝑑𝑑𝑙𝑙𝑙𝑙, 
written under Gray decomposition Eq. (4) and by injecting the closure relations on temperature Eq. (36): 

 

�̇�𝑚𝑙𝑙𝑙𝑙 =
1

∆ℎ𝑣𝑣𝑣𝑣𝑝𝑝
� � 〈𝛩𝛩𝑗𝑗〉𝑗𝑗𝐹𝐹𝑗𝑗

𝑙𝑙𝑙𝑙

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

+ � ∇〈𝛩𝛩𝑗𝑗〉𝑗𝑗.𝐆𝐆𝑗𝑗
𝑙𝑙𝑙𝑙

𝑗𝑗=𝑙𝑙,𝑙𝑙,𝑓𝑓

�  (56)  

𝐹𝐹𝑗𝑗
𝑙𝑙𝑙𝑙 =

1
𝑉𝑉
�(𝜆𝜆𝑙𝑙∇𝑐𝑐𝑙𝑙𝑗𝑗 − 𝜆𝜆𝑙𝑙∇𝑐𝑐𝑙𝑙𝑗𝑗).𝐧𝐧𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑

 

𝐴𝐴𝑙𝑙𝑙𝑙

 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (57)  

𝐆𝐆𝑗𝑗
𝑙𝑙𝑙𝑙 =

1
𝑉𝑉
�𝐧𝐧𝑙𝑙𝑙𝑙. �𝜆𝜆𝑙𝑙∇𝐝𝐝𝑙𝑙𝑗𝑗 − 𝜆𝜆𝑙𝑙∇𝐝𝐝𝑙𝑙𝑗𝑗� + 𝜆𝜆𝑗𝑗(𝛿𝛿𝑗𝑗𝑙𝑙 − 𝛿𝛿𝑗𝑗𝑙𝑙)𝐧𝐧𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑

 

𝐴𝐴𝑙𝑙𝑙𝑙

 𝑗𝑗 = 𝑙𝑙,𝑔𝑔, 𝑠𝑠 (58)  

 
where 𝐹𝐹𝑗𝑗

𝑙𝑙𝑙𝑙,𝐆𝐆𝑗𝑗
𝑙𝑙𝑙𝑙 are the 6 macroscopic closures for the volume boiling rate �̇�𝑚𝑙𝑙𝑙𝑙 respectively associated to the averaged relative 

temperature and their gradient, of the phase 𝑗𝑗. 
 
3.4. Perspectives 

The ultimate objective of this work is to characterize the macroscopic behaviour of the medium, i.e., to resolve the 
macroscopic boundary value problem given by Eqs. (49), (50) and (51). This requires appropriate values for the macroscopic 
properties, which may be obtained in two ways. The first one consists in resolving numerically the closure problems 
represented by Eqs. (37) to (48), and the second one consists in implementing ad hoc closure relations, determined 
experimentally or by extension of models for close comparable applications. 

A numerical resolution of the closure problems requires specific efforts and further developments, as well as an explicit 
resolution of the local boundary value problem on a REV of the medium and in representative conditions in terms of power, 
velocity, pressure and temperature, which is an even more challenging task. This is clearly beyond the scope of this work, 
which is a first approach of the problem and ambitions to identify the most important effects before a more precise 
characterisation. 

The second way then appears preferable, and the relevant constitutive laws will be identified in the literature, as well as 
the ones which are missing and thus require further research. Then the obtained modelling will be implemented to evaluate 
the behavior of a debris bed under self-levelling conditions. 

 
4. Conclusions 
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In this work, the Volume Averaging method has been applied to an unconsolidated granular medium with internal 
volumetric heat source and a boiling sodium flow out of local thermal equilibrium. The macroscopic sources proposed are 
the averaged velocity, the averaged relative temperature and the gradient of the average temperature of each phase. This 
leads to define 36 macroscopic closures and the closure problems which determine the effective properties of the debris bed. 
A closure for the volume boiling rate of the sodium and their 6 associated effective properties were proposed. 

The numerical resolution of the closure problems is a very challenging task. Thus, in the future, the existing empirical 
closure relations will be reviewed, and the model will be implemented in a numerical platform in order to get the first 
evaluation of this debris bed model behaviour under self-levelling conditions [13]. Then this simulation will be compared to 
experimental results [14] [15]. 
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