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Abstract - In this paper, using a simple combustion device consisting of a premixed burner, a rectangular cylinder, and a visualization 
window, the pressure fluctuation level and fame images were measured when the flame position and operating conditions were varied. 
By applying a Convolutional Autoencoder (CAE) to the acquired images and extracting features, a Combustion Instability Index 
(ΔCAETI_err) was defined that can quantify flame conditions. By organizing the correlation between the proposed index and combustion 
oscillation levels, we evaluated the possibility of detecting signs of increased combustion oscillation. The results showed that the proposed 
Combustion Instability Index and the combustion oscillation level were highly correlated. The mechanism that causes the increase in 
combustion oscillation level was discussed by evaluating the effect of operating conditions on flame distribution using Grad-CAM data 
analysis, which enable visualization of the index on a two-dimensional plane. 
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1. Introduction 

To improve the reliability of combustors in gas turbines, rocket engines, it’s necessary to prevent the occurrence of 
sudden abnormal condition by monitoring the operating conditions measured using various sensors. Research has been 
conducted on a method that can detect signs of combustion instability during lean combustion by measuring pressure 
fluctuation data inside the combustor and those data were analysed using machine learning and deep neural networks (DNN) 
[1][2][3]. 

On the other hand, not only the pressure fluctuation data but also the spatial distribution and time variation of the flame 
are important information to determine whether the combustion oscillation level increases or not. There are a number of 
studies that investigate the distribution of heating rate fluctuations and flame shape characteristics to identify signs of 
combustion Instability. For example, a method to directly evaluate heat release rate fluctuations has been proposed to 
visualize and measure the distribution of OH radicals in a flame by fluorescing them (OH-PLIF method) [4][5]. Research 
and other activities to monitor and classify combustion conditions and evaluate combustion instability have also been 
conducted actively in recent years by analysing these image data using machine learning and Convolutional Neural Networks 
(CNN) [6][7][8]. 

In this study, combustion experiments were conducted using a simple combustion device consisting of a burner with a 
swirler nozzle and a rectangular cylinder with a visualization window. Flame images acquired by a high-speed camera were 
analysed using a Convolutional Autoencoder to extract flame features. The difference between the reconstructed image based 
on the feature values and the input image were defined as the Combustion Instability Index, and the relationship between 
this index and the combustion oscillation level were discussed. In the experiment, the combustion oscillation level was 
measured by a pressure fluctuation sensor, and combustion experiments were conducted for several cases of varying the fuel-
air ratio of the premixed air of LP gas and air. 

 
2. Experiment Summary 
2.1. Experimental device and measuring equipment 

The experimental device used in this study is shown in Fig.1. A premixing nozzle with a swirler was inserted into a 50 
mm square rectangular cylinder 1200 mm long, and LP gas (main component: propane) and air was supplied to the nozzle 
by a mass flow meter (HORIBA: S600-BM212). The combustion oscillation level was measured with a microphone (Bruel 
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& Kjaer: 4938) placed at the combustion cylinder 
inlet. The device used in this study was equipped 
with a visualization window to observe the flame 
inside the combustor, and a high-speed camera 
(FASTCAM: SA3 LCB) was used to take images. 
A high-speed camera capable of measuring 
monochrome images was used. The position of the 
pressure fluctuation resulting from the acoustic 
mode inside the combustor and the heat release rate  
fluctuation of the flame are important factors for 
combustion instability. The position of the 
visualization window can be moved in the flow 
direction to allow flame images to be acquired 
during tests in which the flame position is 
intentionally changed. A Malfunction (NI: USB-
6251) I/O device was used to synchronize the mass 
flow meter, microphone, and high-speed camera 
outputs. A premixing nozzle with a swirler was used 
to ensure flame stabilization.  

 
2.2. Experimental condition 

In order to obtain data under various combustion conditions, the combustion oscillation level and flame image data 
were obtained by keeping the LP gas flow constant and changing the air flow condition step by step as shown in Table 
1. The air flow rate was set to the limit of flame lift and blowout, and the gas flow rate was set to the limit considering 
the heat resistance of the nozzle (uncooled). As shown in the left of Fig.2, the nozzles were positioned at L/2, L/4, and 
L/8 from the bottom (upstream) end of the cylinder relative to the total length of the combustion cylinder (L). The flame 
position was varied in order to investigate the effect of the relationship between the antinode, node, and midpoint of the 
first-order acoustic mode generated in the combustor and the location of the flame on the level of combustion oscillation. 
The air flow rate was controlled sequentially as shown in the right of Fig.2. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Simplified combustion devices and instrument 

Table1: Experimental parameters 

Fig.2: Burner position and operating condition 
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2.3. Equipment Characteristics 
An example of the measurement data obtained from the combustion experiment is shown in Fig.3. The air flow rate was 

was increased stepwise at 7 seconds after starting the combustion operation sequence, and the combustion oscillation level 
level tended to increase gradually as the air flow rate increased. The maximum combustion oscillation level occurred 
approximately 20 seconds after the start of the step change in air flow rate. The image taken by the high-speed camera (20 
(20 seconds after the start of the sequence) is shown on the right of Fig.3. In the early period after the start of the combustion 
combustion operation sequence, the air flow rate is low, resulting in an orange flame due to thermal radiation from carbon 
particles (soot particles) generated by the decomposition of hydrocarbons, but as the air flow rate is gradually increased, the 
flame becomes blue-white due to emission of unstable radicals. The orange flame under low air flow rate conditions will 
show relatively white when viewed in a monochrome image from a high-speed camera. The image on the right of Fig.3 
shows a bluish-white flame at a timing of high air flow rate, indicating that the white area is the high-temperature combustion 
zone. 

Frequency analysis of the combustion oscillation generated by the combustion device used in this study confirmed that 
there is a peak at 158 Hz. 158 Hz is considered to be generated by the open-open acoustic first-order mode (half wavelength) 
generated by this combustion device, and the average sound velocity inside the combustion device is estimated to be 379 
[m/s] and the average temperature is 104 [°C]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
3. Data Analysis Methods 
3.1. Convolutional Autoencoder (CAE) 

Convolutional Autoencoder (CAE) is a type of Deep Learning that combines an Autoencoder and a Convolutional 
Neural Network (CNN) for feature extraction of data [9]. In this study, CAE models were built using flame images taken by 
a high-speed camera during normal operation. CAE data analysis was then performed on all measured data, and an attempt 
was made to discriminate abnormal conditions by evaluating the differences between input and output images. The cases 
with small combustion oscillation levels (from POS1 to POS3) were used as training data for the detection of abnormal 
conditions.  

The evaluation methods for combustion instability using CAE are shown in Fig.4 and Eqs. (1) - (3) below. In the first 
method, as shown in left of Fig.4 and Eqs. (1), the time variation value (ΔCAEerr) of the residual sum of squares of the 
luminance (𝑥𝑥in) in the input image and (𝑥𝑥out) after CAE analysis is defined as the Combustion Instability Index. The second 
method was focused on the interval corresponding to the sequential control of air flow as shown in right of Fig.4 and Eqs. 
(2), and was defined the amount of change in each interval as (ΔCAETI_err). In the results and discussion in Chapter 4, we 
confirm the validity of the evaluation index proposed in this study by comparing it with the Combustion Instability Index 
calculated by the conventional evaluation method (ΔImTI_err) as Eqs. (3), which does not use CAE. 
 

Fig.3: An example of measurement results (POS3_Case3) 
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𝑛𝑛: Number of pixels in the image, 𝛼𝛼: Number of samples in the time interval before 𝑡𝑡, 𝛽𝛽: Number of samples in the time 
interval behind 𝑡𝑡, 𝑥𝑥: Luminance (normalization:0-1) 
 

This study investigated the relationship between the Combustion Instability Index calculated from the image data 
analysis described above and the level of pressure fluctuation. In this study, combustion experiments were conducted 
with sequential control of air flow rate, and it’s considered that the Combustion Instability Index also changes in steps 
according to the change in air flow rate. As shown in Fig.5, the Combustion Instability Index (ΔCAEerr), indicated by 
the red line defined as Eqs. (1) is a large change around intervals from TI6 to TI8. The Combustion Instability Index 
tends to change significantly around intervals 6 to 8. 

As shown in Fig.6, the combustion oscillation level was evaluated as the average of the five maximum values of 
the pressure fluctuation level in each case. The pressure fluctuation level was evaluated by the absolute value of 
amplitude. By evaluating the correlation between the Combustion Instability Index and the pressure fluctuation level for 
each section, we discussed in Chapter 4 whether the information obtained from the flame image could detect signs of 
increased pressure fluctuation. The time difference between the time of occurrence of combustion instability and the end 
of the time interval was defined as the margin of abnormality detection (ta), which was used as an index to evaluate how 
much margin there is against the point of occurrence of increased combustion oscillation in Chapter 4. 

 
 
 
 
 

Fig.4: Quantitative evaluation of combustion instability by using CAE 
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3.2. Gard-CAM 

In this study, the Grad-CAM method [10] was applied to visualize which parts of the image were affected by the model 
in the feature extraction process by CNN as shown in section 3.1. The heatmap output shows the areas that affected the 
output value (𝑆𝑆𝑐𝑐 ) by multiplying the features (𝐴𝐴𝑥𝑥𝑥𝑥𝑘𝑘 ) output by the gradient (𝛼𝛼𝑐𝑐𝑘𝑘 ) obtained by back-propagation. The 
calculation equation is shown in Eqs. (4). 
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𝑘𝑘：Output of convolutional layer, 𝐴𝐴xyk ：Features at position 𝑥𝑥,𝑦𝑦, 𝑧𝑧：Number of pixels in feature map, 𝜔𝜔ck：Weight 
parameter connecting output and input, 𝑆𝑆c：Output at class 𝑐𝑐 
 

As shown in Fig.7, this study focused on the gradient between the output of the convolution layer of the encoder section 
and the residual sum of squares calculated by Eqs. (2), and attempted to visualize in a heat map the part that affected the data 
analysis results. The state change of Combustion Instability Index (ΔCAETI_err) is evaluated in the CAE data analysis, and 
in the evaluation using Grad-CAM shown in this chapter, the amount of change in the average value of each interval shown 
in Eqs.(5) was also incorporated as an evaluation method so that the state of change in the area that affected the data analysis 
can be evaluated using image distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: Definition of Grad-CAM in this study 

Fig.5: Definition of Time interval (TI) 
and Combustion Instability Index 

Fig.6: Evaluation of pressure fluctuation level 
and anomaly detection time 
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𝛼𝛼: Number of samples in the time interval before 𝑡𝑡, 𝛽𝛽: Number of samples in the time interval behind 𝑡𝑡  
 
4. Results and Discussion 

Data analysis of all cases was performed using the CAE evaluation method shown in section 3. Fig.8 shows the 
relationship between the pressure fluctuation level and the combustion instability level calculated from flame images in 
time interval from 5 to 6. The left figure a) plots the average of the luminance change of the high-speed camera image 
calculated from the conventional index ΔImTI_err as shown in Eqs. (3) and the oscillation level of the top five points. 
The right figure b) plots the Combustion Instability Index (ΔCAETI_err) calculated from Eqs. (2) proposed in this study 
and the average value of the combustion oscillation level of the top five points. The proposed Combustion Instability 
Index has a correlation coefficient of 0.83, which indicates that it can detect the onset of combustion oscillation level 
better than conventional method. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 shows the results of correlation analysis between Combustion Instability Index (ΔCAETI_err) and combustion 

oscillation level for all data. The method proposed in this study tends to show higher correlations in all time intervals 
than the conventional method. In addition, according to the definition shown in Fig.6, the relationship between the 
interval from 5 to 6 and the oscillation increase start time were analysed in order to quantitatively evaluate how many 
seconds before the start of oscillation increase it’s possible to detect the signs of oscillation increase. The results of the 
data analysis for all data (Fig.10) showed that the most frequent value of the detection time was from 5 to 6 seconds. 
Based on the above results, the Combustion Instability Index (ΔCAETI_err ) proposed in this study is an effective 
evaluation index that can detect signs of increased oscillation in advance. 

 
 
 
 
 
 

b) Evaluation using the new proposed 
index ΔCAETI_err 

a) Evaluation using conventional index ΔImTI_err 

Fig.8: Relationship between Combustion Instability Index and pressure fluctuation level in time interval from 5 to 6 
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Next, we attempted to identify the elements in the image that have a significant impact on Combustion Instability Index 

by analysing the data using Grad-CAM as described in section 3.2. In this data analysis, the evaluation index shown in Eqs. 
(5) was used. As in the evaluation of the Combustion Instability Index, we focused on the amount of change in the interval 
mean in the Grad-CAM.  

In the Grad-CAM image shown in the left of Fig.11, the inner flame near the nozzle outlet and the outer flame at the 
edge of the flame tend to be coloured red. Focusing on the flame position of Pos3 shown in right of Fig.11, the red area shifts 
from the outer flame to the inner flame as the air flow rate is increased in the order of Case 2 to 5. Since the combustion 
oscillation level reaches its maximum in Case 3 at the middle air flow rate, there is a possibility that there is a singularity 
where the coupling between combustion flame and acoustic mode is promoted and the oscillation increases during the 
transition process of air flow rate change. Qualitatively, the Combustion Instability Index increases as the combustion 
oscillation level increases in the order of POS2, POS1, and POS3, as shown the coloured circle in the left figure, suggesting 
that the evaluation index for combustion instability proposed in this study is effective. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9: Relationship between time interval  
and correlation coefficient 

Fig.10: Relationship between time interval 
and detection time (ta) 

Fig.11 Evaluation of influence by using Grad-CAM（ΔMGrad-CAMTI_𝑖𝑖） 
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5. Conclusion 
In this study, in order to understand combustion instability phenomena in a simple way, the pressure fluctuation 

and combustion flame images in various operations were measured using a simple combustion device consisting of a 
with a nozzle with a swirler and a rectangular cylinder with a visualization window. We focused on the flame images 
with a high-speed camera, we used the Combustion Instability Index (ΔCAETI_err ) calculated from Convolution 
(CAE) analysis and discussed its relationship with the combustion oscillation level. At the same time, we applied the 
CAM data analysis method to visualize which part of the image is focused on in the feature extraction process for the 
Convolutional Neural Network (CNN) used in the calculation process of the Combustion Instability Index (ΔCAETI_err). 
The correlation between the Combustion Instability Index (ΔCAETI_err) and the combustion oscillation level proposed 
in this study is as high as 0.83, indicating the possibility of detecting the increasing trend of combustion oscillation level 
in advance. The results of the Grad-CAM data analysis, which allows visualization of the influence on the Combustion 
Instability Index (ΔCAETI_err), confirmed a tendency for the influence rate to shift from the outer flame to the inner 
flame with increasing air flow rate. Although there is a singular point where the combustion oscillation level increases 
with a specific air flow rate, qualitatively, the evaluation index for combustion instability proposed in this study was 
confirmed to be valid. 
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