
Proceedings of the 9th  World Congress on Momentum, Heat and Mass Transfer (MHMT'24) 
London, United kingdom – April 11 – 13, 2024 
Paper No. ENFHT  133 
DOI: 10.11159/enfht24.133 

 

ENFHT 133-1 

 
The Virtual Mass of Two Bubbles Rising in Liquids 

 
Abdullah Abbas Kendoush 

Department of Nuclear Engineering Technology 
Augusta Technical College 
Augusta, GA, 30906, USA 

e-mail: akendoush@augustatech.edu 
 

 
Abstract - Equations were derived for the virtual mass coefficients 𝐶𝐶𝑚𝑚 of two bubbles accelerating with the flow along their 
line of centres and perpendicular to their line of centres. The method of solution was based on potential flow. The solution 
proved that 𝐶𝐶𝑚𝑚 is higher at low separation of the two side-by-side bubbles and lower at low separation of the two bubbles 
accelerating along their line of centres. All the derived solutions of 𝐶𝐶𝑚𝑚 approached asymptotically the classical value of 0.5 
for the single accelerating bubble. The solutions were compared favourably with other available theoretical and experimental 
results. 
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1. Introduction 

During bubble acceleration in liquid, work must be done in changing the kinetic energy of the liquid surrounding the 
bubble, which is above the work necessary to change the kinetic energy of the bubble itself. This additional work can be 
found by calculating the “virtual” mass of the bubble. Some authors prefer to use “added mass” instead of virtual mass. 

In computing this virtual mass, it is permissible to ignore viscosity and compute the additional force on the basis of 
potential flow as was done by van Wijngaarden  [1]  and Kendoush  [2]. 

The calculation of the virtual mass of two bubbles helps to understand the hydrodynamic interaction in the flow of 
bubble swarms. Kok [3]  calculated the kinetic energy of two bubbles in general motion through unbounded perfect fluid by  
solving Lagrange’s equations numerically. 

Legendre et al. [4]  studied numerically the three-dimensional flow past two identical spherical bubbles moving side by 
side by solving the full Navier-Stokes equations to get the drag and lift forces. Kendoush et al. [5] found experimentally that 
the virtual mass coefficient (𝐶𝐶𝑚𝑚) of two solid spheres accelerating in line with their line of centers increases with spheres 
spacing while those moving side by side decreases with spheres spacing.  It is well known in the field of particle 
hydrodynamics, that both types of particles (fluid and solid) have the same 𝐶𝐶𝑚𝑚 which only depends on particle shape and 
type of motion ( that is, linear acceleration or rotation). 

The exploration of bubble coalescence phenomenon depends heavily on the exact formulation of the virtual mass effect 
as the downstream bubble normally accelerates to catch up with the leading bubble (Prince and Blanch [6], Kumaran and 
Koch [7]  and Duineveld  [8]). The recent communication on bubble coalescence of Hasan and Zakaria [18] did not take into 
account of the effects of the virtual mass. 

The aim of the present study is to derive analytically, closed form equations for the virtual mass coefficients of two 
identical bubbles accelerating in liquids with tandem and side by side orientation. 

 
2 Theory 
2.1 Two Bubbles Rising in Line 

Consider two equal-sized bubbles (A) and (B) as shown in Fig. 1, where a  is the radius of both bubbles and L   is the 
distance between their centres. Assume no deformation in the shape of bubbles as they rise. Using potential flow the 
following equations for the velocity of rise for bubble (A) is obtained in the Appendix as follows   

  

mailto:akendoush@augustatech.edu


 
 

 
 

 
 

 
ENFHT 133-2 

( )[ ] 231
−

+= LaUU A                                                                                                                                                             (1)  
where  

µρ 92 gaU =  is the terminal velocity of a single bubble in an infinite medium (Batchelor,  [10]), and for bubble 
(B) 
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Fig. 1. Two bubbles vertically one above the other in a flow field. 
Reprinted by permission of ASME. 

 
 
The kinetic energy of the fluid surrounding the two bubbles rising in line is given by Milne-Thomson [11] based on 

irrotational and inviscid flow as follows 
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where AM , BM  are the mass of the fluid displaced by bubble A and bubble B respectively, a  and b  are the radii of 
of bubble A and bubble B respectively. The sign of the middle term of this equation was shown positive in Milne-Thomson 
[11], because the spheres were moving towards each other, it was changed to negative because our spheres were moving in 

the same direction. For two equal-size spheres ba =  and ( ) ρπ 334 aMM BA == , Eq. (3) becomes the following 
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or, the following 
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or, in a more compact form 
𝐾𝐾𝐾𝐾 = 𝜋𝜋𝑎𝑎3𝜌𝜌𝑈𝑈2𝐺𝐺                                                                                                                                                                                 (6) 
where we called the parameter in the curly bracket of Eq. (5) by 𝐺𝐺 as follows 
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We shall do some manipulation in order to make this expression similar to the classical expression of kinetic energy  

𝐾𝐾𝐾𝐾 = 1
2
𝑚𝑚𝑈𝑈2 , therefore Eq. (6) becomes the following 
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This equation, in fact, gives the virtual mass of the two bubbles as follows 
𝑚𝑚 = 2𝜋𝜋𝑎𝑎3𝜌𝜌𝐺𝐺                                                                                                                                                                                       (9) 
The virtual mass coefficient 𝐶𝐶𝑚𝑚 is defined as the ratio of the volume of the “virtual mass” to the volume of the fluid 

displaced by the two bubbles, accordingly we get the following 
𝐶𝐶𝑚𝑚 = 2𝜋𝜋𝑎𝑎3𝜌𝜌𝜌𝜌
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or, the following after substituting for the value of 𝐺𝐺 and rearranging 
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as ∞→L , this equation recovers the classical value of 0.5 for the virtual mass coefficient of the single spherical bubble. 
This is a new equation that has not been reported before. 
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2.2 Two Bubbles Rising Side by Side 
Fig. 2 shows two equal-sized bubbles with their equal speed of rise as given by Kendoush [11] and the Appendix 

as follows 
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or, we may say 
𝑈𝑈𝐴𝐴 = 𝑈𝑈𝐵𝐵 = 𝑈𝑈𝐾𝐾                                                                                                                                                                            (13) 
where 
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The kinetic energy equation of Milne-Thomson [11] for the fluid around two spheres rising side by side is given as 
follows 
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As we have done before in Section 2.1, for two equal-size spheres ba =  and ( ) ρπ 334 aMM BA == , Eq. (15) 
becomes the following 
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From this equation, we may get the virtual mass as we have done earlier as follows 
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and the virtual mass coefficient of the two bubbles moving side by side, becomes as follows 
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as ∞→L , this equation recovers the classical value of 0.5 for the virtual mass coefficient of the single spherical bubble. 
 

3. Discussion and Validation of Results 
     Fig. 3 shows a comparison between the virtual mass coefficient of  two bubbles rising side by side given by Eq. (18) 

and the virtual mass coefficient of the two bubbles rising in line given by Eq. (11). The reason of higher 𝐶𝐶𝑚𝑚 in the side-by-
side bubbles is due to the fact that the kinetic energy created in the fluid by these two bubbles is apparently greater than that 
created by the two bubbles rising in line. In the Appendix, it is proved theoretically that the velocity of rise of any one bubble 
of the two side-by-side pair is higher than the leading or the trailing bubble in the tandem orientation. Naturally, accelerated 
velocity leads to higher kinetic energy and higher 𝐶𝐶𝑚𝑚. 

 

 
 
Fig. 3 Comparison between Cm of the tandem bubbles (dashed line) Eq. (11) and the side by side bubbles (solid line) 

Eq. (18). 
 

Figure 4 shows a comparison between the present solution (Eq. 11), and the following equation of van Wijngaarden [1] 
for two bubbles rising in line 

( ) ( ) ( ) ( )[ ]⋅⋅⋅+−++−= 9863 393315.0 LaLaLaLaCm                                                                                        (19) 
The experimental results of Kendoush et al. [5] for a particle diameter of 9.4 mm, are shown in Fig. 4, together with the 

numerical results of Helfinstine and Dalton [9], as well as the analytical results of Kamp et al. [13] who used the kinetic 
energy equation of Lamb [14] in their derivation.  The increase of 𝐶𝐶𝑚𝑚 as the two bubbles approach each other makes the 
solution of Kamp et al. [13] a unique one due to their assumption of the two bubbles moving towards each other. The data 
of Kamp et al. [13] were shown in their Table 1, which I reproduced graphically in Fig.4. 

       Van Wijngaarden [1] derived the following equation for 𝐶𝐶𝑚𝑚 of two bubbles rising side by side 
( )( ) ( )( ) ( ) ( )( )[ ]⋅⋅⋅+++++= 9863 433432315.0 LaLaLaLaCm                                                                                (20) 
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Fig. 4. Comparison between the present solution for the Cm of the two bubbles rising in line (Eq. 11 ), solid line, Kamp et al. 

[13], dotted line, van Wijngaarden [1], Eq. (19), dashed line, dash dotted line, Helfinstine and Dalton [9], and crosses, Kendoush et 
al. [5].   

Eq. (20) is shown plotted in Fig. 5 together with the present solution of Eq. (18). Close agreement is shown between 
the two solutions. The reason of the slight difference between the present solution and that of van Wijngaarden [1] is 
that I avoided the series representation of the velocity formulas by using the viscous dissipation function of Eq. (A4), of 
the Appendix, where the integral was evaluated at 𝑟𝑟 = 𝑎𝑎. Fig. 5 shows the experimental data of Kendoush et al. [5] 
where the agreement was not too close, but the trend of the increase at close separation is agreeable with both theories.  

For further validating the present results, a comparison was made with the experimental data of Sanada [15] and 
Sanada et al. [16] who carefully measured sizes, separations, trajectories and velocities of two bubbles using special 
types of fluids. The velocity of the leading bubble in the tandem pair was modeled by the following equation of motion 
which incorporates the newly derived 𝐶𝐶𝑚𝑚 of Eq. (11) and the drag force on bubble A of  Eq. (A7) 

( ) ( )[ ]233 112
3
4 LaaUgaUmC

dt
d

AAm +−= πµρπ
                                                                                                    (21) 

The first term on the right side represents the buoyancy and the second term is the drag force. The mass of the 
bubble is neglected in Eq. (21) as well as the history (Basset term) because their contributions are considered minimum. 
This equation was solved by using the physical properties of Table 1. Eq. (21) was solved with the following initial 
conditions 

0=AU   at 0=t                                                                                                                                                            (22) 
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Fig. 5. Comparison between the present solution for the Cm of the two bubbles rising side by side (Eq. 18), solid line, van Wijngaarden 
[1] (Eq. 20) , dashed line, red line, Helfinstine and Dalton [9], crosses are the experimental data of Kendoush et al. [5]. 

 

For a bubble radius of 
31057.0 −= xa m, 2.0=La  and 𝐶𝐶𝑚𝑚 = 0.4803, Eq. (21) was solved by the integrating factor 

method. The properties of the working liquid are shown in Table 1. The solution was performed at different time steps, 
different separation, and different 𝐶𝐶𝑚𝑚 calculated from the information of Figs. 4.16 and 4.17 of Sanada’s thesis [15]. The 
analytical solution of Eq. (21) is the following 

 
( )[ ]tU A 695.112exp11811.0 −−=                  m/s                                                                                                (23) 

 
  
 

Table 1 Physical properties of K1 fluid used by Sanada [15]. 
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Fig. 6 shows a comparison between the present solution of Eq. (23),  and the experimental data of Sanada [15] 
where the agreement with the present solution is taken as an evidence of the internal consistency of the present theoretical 
calculations. The little hump in the experimental data of Sanada [15] is a form of experimental fluctuation. 

 

 
Fig. 6. Comparison of the present solution of Eq. (23) (______) with the experimental data of Sanada [15] (- - - ) for the leading bubble. 

 
4 Conclusions 

New equations were derived in this paper for the virtual mass coefficients of two bubbles moving side by side and 
in tandem. The following characteristics were established from the new derivation of the virtual mass coefficients 
• It increases with the decrease in the separation distance between two bubbles for the two bubbles rising side by 

side. 
• It decreases with the decrease in the separation distance between two bubbles for the two bubbles rising in line. 
• They approach asymptotically the value of 0.5 for the single spherical bubble when the separation distance 

between bubbles increases indefinitely. This is an evidence of the proof of the validity of the present analyses. 
The present solution was validated by comparison with theoretical solutions of other investigators, and the 
experimental data of the present author. 
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Appendix : Derivation of the Velocity of Rise of Two Bubbles 
 

A1. Two Bubbles rising in Line 
     The method of images was used by Kendoush [12] to derive the velocity potential of bubble A (Fig. 1) as given below 
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The radial and tangential velocity components of the flow were obtained from φ∇=V  as follows 

( ) ( ) ( ) ( )[ ]33331cos raLaLaraUV Ar +−+−= θ                                                                         (A2) 
and 

( ) ( ) ( ) ( )[ ]3333 5.05.01sin raLaLaraUV A +++= θθ                                                                 (A3) 
The drag force is calculated from the evaluation of the rate of viscous dissipation by using the following equation 
(Kendoush, [17]) 
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The tangential shear stress is given by the following equation 
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Evaluating this equation and substituting it together with Eq. (A3) into Eq. (A4), we get the following after solving for 
the integral 
𝑊𝑊𝐴𝐴 = 12𝜋𝜋𝜇𝜇𝑎𝑎𝑈𝑈𝐴𝐴2[1 + (𝑎𝑎 𝐿𝐿⁄ )3]2                                                                                                                                        (A6) 
The drag force on bubble A is given by  𝐷𝐷𝐴𝐴 = 𝑊𝑊𝐴𝐴 𝑈𝑈𝐴𝐴⁄  , which becomes equal to the following 
𝐷𝐷𝐴𝐴 = 12𝜋𝜋𝜇𝜇𝑎𝑎𝑈𝑈𝐴𝐴[1 + (𝑎𝑎 𝐿𝐿⁄ )3]2                                                                                                                                         (A7) 
A simple force balance on bubble A is done by equating the drag force from this equation to the buoyancy force as 
follows 
12𝜋𝜋𝜇𝜇𝑎𝑎𝑈𝑈𝐴𝐴[1 + (𝑎𝑎 𝐿𝐿⁄ )3]2 = (4 3⁄ )𝜋𝜋𝑎𝑎3𝜌𝜌𝜌𝜌                                                                                                                           (A8) 
This equation yields Eq. (1) of the text. 
Similarly for bubble B, the velocity potential is given by the following (Kendoush, 2007) 
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and the drag force on bubble B becomes 
𝐷𝐷𝐵𝐵 = 12𝜋𝜋𝜇𝜇𝑎𝑎𝑈𝑈𝐵𝐵[1 + (𝑎𝑎 𝐿𝐿⁄ )6]2                                                                                                                                         (A10)  
 
A2. Two side-by-side bubbles 
The  velocity potential of  bubble A (Fig. 2)  was obtained by Kendoush [12] as follows 
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and for bubble B 
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Here 𝑈𝑈𝐴𝐴 = 𝑈𝑈𝐵𝐵. Following the same method of solution outlined in Section A1, we get Eq. ( 10 ) of the text. 


