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Extended Abstract 
To assess the mass transfer rate between liquid and particles, correlations involving the mass transfer coefficient 𝑘 or its 

dimensionless counterpart, the Sherwood number Sh, are commonly employed [1-7]. In the context of multiparticle systems, 

the presence of other particles affects the mass transfer of a specific particle, and therefore correlations must account for this 

effect. The available correlations lack rigorous theoretical support and do not always agree with experimental data [2-7]. In 

this work, we propose a theoretically robust approach based on scaling and order of magnitude analysis. Using the definition 

of 𝑘 and Fick's law, we estimate the order of magnitude of 𝑘 and Sh as follows: 

𝑘∆𝐶 ~ 𝐷 ∆𝐶 𝛿𝑐⁄ →  𝑘~ 𝐷 𝛿𝑐⁄  → Sh~ 𝑑𝑝 𝛿𝑐⁄                                                            (1) 

where 𝐷 is the solute molecular diffusivity, ∆𝐶 is the concentration difference between the particle surface and the bulk of 

the liquid, 𝛿𝑐 is the length scale for significant concentration changes near the particle surface, and 𝑑𝑝 is the particle diameter. 

Due to the large Schmidt number (Sc) in the liquid, when the Reynolds number (Re) is not extremely small, the Peclet number 

(Pe) is much larger than unity. In such cases, a thin concentration boundary layer forms around the particle, 𝛿𝑐 representing 

its thickness [8]. Given that 𝛿𝑐 is very small, we can simplify the mass balance equations for the liquid mixture and the solute 

within this boundary layer. Scaling these simplified equations yields a relationship between 𝛿𝑐 and the velocity scale 𝑢𝑐 at 

the outer edge of the concentration boundary layer; this relationship reads: 

𝛿𝑐

𝑑𝑝
~ (

𝐷

𝑢𝑐𝑑𝑝
)

1/2

                                                                                    (2) 

Now, we relate 𝛿𝑐 and 𝑢𝑐 to the length and velocity scales of the velocity field around the particles, denoted as 𝛿𝑣 and 

𝑢𝑣 , respectively. Due to the large Sc and to Pe being far larger than Re, we can assume that 𝛿𝑐  is far smaller than  𝛿𝑣 . 

Employing the scaling method, we can write: 
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                                                                     (3) 

To estimate 𝛿𝑣 and 𝑢𝑣, we employ the order of magnitude analysis applied to the drag force acting on a particle (𝐹𝑝). 

For a uniform suspension at equilibrium, 𝐹𝑝 is related to the unhindered terminal velocity (𝑢𝑡) through the equation [9]: 

𝐹𝑝 = (
𝜋

4
𝑑𝑝

2) (
1

2
𝜌𝑒𝑢𝑡

2) 𝐶𝐷
𝑡                                                                           (4) 

where 𝜌𝑒 is the liquid density and 𝐶𝐷
𝑡  is the particle drag coefficient characterized by 𝑢𝑡. To calculate 𝐶𝐷

𝑡 , we employ the 

correlation of Dallavalle [10]: 

𝐶𝐷
𝑡 = (0.63 + 4.8Ret

−1/2
)

2
,  Ret ≡ 𝜌𝑒𝑢𝑡𝑑𝑝 𝜇𝑒⁄                                                     (5) 

where 𝜇𝑒 is the liquid viscosity. 𝑢𝑡 can be related to the superficial velocity (𝑢) by the equation [11]: 

𝑢 = 𝑢𝑡휀𝑛   with  𝑛 =
4.8+2.4∙0.175Ret

3/4

1+0.175Ret
3/4                                                                  (6) 

Moreover, 𝐹𝑝 can be estimated as: 
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𝐹𝑝~ (𝜇𝑒
𝑢𝑣

𝛿𝑣
) 𝜋𝑑𝑝

2                                                                                       (7) 

For multiparticle systems, assuming 𝑢𝑣 has the same order of magnitude as the interstitial velocity 𝑢 휀⁄  and using Eqs. (2) to 

(7), we obtain: 

𝛿𝑐

𝑑𝑝
~2 (

𝐷

𝑢𝑑𝑝

𝑛

Ret𝐶𝐷
𝑡 )

1/3

, Pe ≫ 1                                                                          (8) 

Given the application of concentration boundary layer theory, Pe must be significantly larger than unity. Finally, utilizing 

Eq. (1) and introducing a constant 𝐶 (expected to be of unit order of magnitude), the correlation for Sh reads: 

Sh =
𝐶

2
휀−2𝑛/3(0.63Re + 4.8Re1/2휀𝑛/2)

2/3
Sc1/3 , Re ≡ 𝜌𝑒𝑢𝑑𝑝 𝜇𝑒⁄ , Pe ≫ 1                                        (9) 

The constant 𝐶  is estimated by matching Eq. (9) with experimental data from packed and fluidized beds [12-19]. The 

obtained value indeed has unit order of magnitude, and the correlation aligns well with experimental data, errors being less 

than 30%. These results affirm the applicability of the newly proposed approach. 
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