Proceedings of the 9th World Congress on Momentum, Heat and Mass Transfer (MHMT'24) London, United Kingdom – Apri 11-13, 2024 Paper No. ICMFHT 123 DOI: 10.11159/icmfht24.123

Multi-Scale Simulation Of Biomass Gasification In Fluidized Beds

Shuai Wang ¹, Xiang Yu ¹, Kun Luo ^{1,2}, Jianren Fan ^{1,2}

¹ State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China ² Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China wshuai2014@zju.edu.cn; 138789@zju.edu.cn; zjulk@zju.edu.cn; fanjr@zju.edu.cn

Extended Abstract

Fluidized beds are widely used as energy-intensive chemical reactors for biomass gasification, involving high particle concentration, complex gas-particle/particle-particle interactions, intricate chemical reactions, and significant heat and mass transfer [1]. However, due to the harsh operating conditions of fluidized bed gasifiers, the physical and thermochemical characteristics of dense gas-solid reactive flow inside the reactor remain poorly understood. To address this issue, we have developed a multi-scale numerical strategy that integrates the computational fluid dynamics-discrete element method (CFD-DEM), coarse-grained method (CGM), and multiphase particle-in-cell (MP-PIC) with complex thermochemical sub-models [2-4]. The integrated models were validated using experimental data, demonstrating their reasonable accuracy.

The CFD-DEM model enables the high-fidelity simulation of lab-scale bubbling fluidized bed gasifiers, providing detailed information on particle residence time, heat transfer contribution, carbon conversion ratio, and other crucial parameters. In contrast, the CGM and MP-PIC models facilitate the high-efficiency simulation of pilot-scale and industrial-scale circulating fluidized bed gasifiers, offering in-depth insights into vital in-furnace phenomena such as cluster evolution, size-/density-induced segregation, gas pollutant formation, and so on. Our multi-scale simulation approach is expected to provide valuable information for optimizing the design and process of biomass gasification in fluidized beds and promoting the efficient utilization of renewable energy resources.

References

- [1] Wang S, Hu C, Luo K, Yu J, Fan J. Multi-scale numerical simulation of fluidized beds: Model applicability assessment[J]. Particuology, 2023, 80: 11-41.
- [2] Wang S, Luo K, Fan J. CFD-DEM coupled with thermochemical sub-models for biomass gasification: Validation and sensitivity analysis[J]. Chemical Engineering Science, 2020, 217: 115550.
- [3] Wang S, Shen Y. Coarse-grained CFD-DEM modelling of dense gas-solid reacting flow[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122302.
- [4] Yu J, Wang S, Luo K, L D, Fan J. Study of biomass gasification in an industrial-scale dual circulating fluidized bed (DCFB) using the Eulerian-Lagrangian method[J]. Particuology, 2023, 83: 156-168.