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Abstract -  High-Intensity Focused Ultrasounds (HIFU) technology has several applications in the medical field, such as tumour ablation 
and drug delivery. HIFU technology uses ultrasound to induce temperature increase and, eventually, cavitation in each location to destroy 
a particular tissue or activate a given drug. One of the limitations of HIFU is the side damage caused because of the inaccuracy given by 
the very complex composition of the human body. Computational fluid dynamics analysis can help evaluate the size of the cavitation 
zone that forms at the focal point and estimate eventual deviation from the expected location. The numerical simulation can also help 
estimate the temperatures reached at the focal point or design new devices. 
The numerical model proposed to simulate HIFU is based on the standard compressible Volume of Fluid (VoF) method. The transport 
equation of the liquid volume fraction is coupled with the continuity and momentum conservation equations to solve for the flow field. 
Since the size of incipient bubbles formed by ultrasonically induced cavitation is generally smaller than the single cell, sub-grid models 
are used to describe nucleation, bubble dynamics and collapse unless the critical size of the bubbles or bubble cluster is enough to 
guarantee the creation of an interface. This last condition coincides with several adjacent cells having a volume fraction 0 (<1e-6). When 
a multi-cells bubble is created, the sub-grid models are de-activated, and the newly formed bubble is simulated with the compressible 
VoF method. 
The nucleation was simulated by adopting an empirical correlation based on experimental evidence reported in several works. However, 
it is important to point out that developing a nucleation model to build a fully predictive numerical model to simulate HIFU is essential.  
The Keller--Miksis (KM) equation described the bubbles' dynamics. This equation is derived by assuming spherical symmetry and 
applying the Navier--Stokes equations projected onto the radial coordinate. 
Finally, the collapse was determined by a cavitation threshold that was, once again, derived from an empirical correlation based on 
experimental evidence as the available thresholds, such as the so-called “Blake threshold” are not suitable for the problem under study. 
The vibration frequency and forcing pressure were used to determine the fluctuating pressure boundary condition for each transducer 
composing the transducer array used in the experiments. The numerical model was used to simulate several cases present in the literature. 
This work presents the first step towards realising a predictive model for simulating ultrasonically induced cavitation in biological fluids. 
The framework was realised with the scope of evaluating bubbles' cloud location, size and cavitation intensity, thus allowing better 
treatment control. 
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1. Introduction 

High Intensity Focused Ultrasounds (HIFU) treatment is a minimally invasive medical procedure which involves the 
use of ultrasounds to target alteration (and eventually destruction) of a specific tissue.  

HIFU are used to treat a variety of conditions such as certain types of tumors, tremors and has applications in drug 
delivery.  

The mechanism behind the effectiveness of HIFU is the induced high temperature, shear and eventual cavitation 
associated with focusing high frequency pressure waves in the region of space. Although HIFU are not an invasive technique, 
some side effects might limit their application [1]. Estimating the cavitation cloud's location, extension and intensity is 
paramount to minimising collateral damage. Computational modelling, therefore, has been adopted to optimize treatment 
strategies, design new HIFU probes and assess the collateral damage of the treatment. One aspect which has not been targeted 
by many authors is the description of bubbles’ formation within the liquid medium. The rapid variation in pressure in a 
confined space triggers the formation of gas pockets which form when the liquid is its metastable state.  
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The goal of this work is to model the formation of bubbles in a biological fluid as a first effort towards a predictive 
description of HIFU applications. The work starts with the presentation of the physical problem which is modelled by 
the Navier-Stokes equation solved for a multiphase mixture via the Volume of Fluid (VoF) method. The interface 
between liquid and gas is not geometrically reconstructed but assumed as a continuum in a framework typically named 
algebraic VoF.  

A sub-grid model is adopted to simulate the dynamics of the oscillating bubbles. The sub-grid model is based on 
the Keller-Miksis 1-D Navier Stokes accounting for the viscoelasticity of the medium via the Voigt model [2].  

Two applications of the model are presented, the first concerning cavitation ultrasound beam formation in water 
and the second concerning cavitation induced in an artery by applying an ultrasound source having a frequency of 0.5 
MHz.  
 
2. Numerical Model Description 

The numerical model proposed in this work adopts the common Volume of Fluid (VoF) technique. The transport 
equation of the liquid volume fraction is coupled with the continuity and momentum conservation equations to solve for 
the flow field. Since the size of incipient bubbles is often much smaller than the computational domain, sub-grid models 
are used to describe nucleation, bubbles’ dynamics and collapse. The Keller–Miksis equation was selected to describe 
the bubble dynamics in a non-Newtonian fluid. The bubble dynamics is solved in each computational cell and coupled 
to the flow field through source terms in the transport equations. The interface between bubbles and bulk flow is not 
fully resolved. Instead, a diffuse interface approach is used. A diffuse interface approach is justified because the solver 
must be efficient for real applications involving large computational domains. In the following, the components of the 
model are described in detail. 

 
2.1 Bubble Sub-Models 

UIC involves the dissipation of mechanical energy in a rather peculiar and unique way. The mechanical energy 
provided by the sonotrode, through high-frequency vibration, is converted for the nucleation and oscillation of the vapour 
bubbles. During the collapse, the energy stored in the bubble is released into a minimal volume, leading to local hot spots 
characterized by high pressure and temperature. Heat is transferred from the hot spots to the continuous phase leading to a 
temperature increase in the bulk liquid, which is lower by magnitude than the hot spots. The evolution of a bubble consists 
of three steps: nucleation, oscillation, and collapse. 

Comprehending the complex phenomenon of nucleation is essential to building a physical model that accurately 
predicts the density and size of the vapour bubbles during ultrasonic cavitation. In the classical context of hydrodynamic 
cavitation, when the bulk pressure of the liquid goes below the saturated vapour pressure threshold, bubble nucleation may 
occur in discrete points of the fluid domain, and the cavitation intensity is a function of the bulk pressure and velocity of 
the flow field. This approach, however, is not suitable for system in which cavitation is induced by ultrasounds propagation 
as cavitation occurs while the liquid is in its metastable state. The approach adopted in the present work is described more 
deeply in [5] defines the domain of existence of the bubbles assuming a threshold of 1 MPa which is in agreement with the 
literature. Accordingly, in the present CFD code, the bubble inception as the onset of cavitation is triggered when the 
pressure amplitude within a computational cell exceeds the threshold. The bubbles density function is then described with 
the hyperbolic tangent function proposed by Vanhille [4] expressed as: 

     

𝑁𝑁 = �𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚tanh ��
𝑃𝑃 − 𝑃𝑃𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
�� if|𝑃𝑃| ≥ 𝑃𝑃𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,

0 if|𝑃𝑃| < 𝑃𝑃𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,
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where 𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚 corresponds to the cavitation threshold of the medium that was proposed by Vanhille in his formulation 
[4], and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum bubble density that can be reached within the computational cell.  

After the nucleation step, vapour bubbles oscillate at high frequency. The Keller–Miksis (KM) equation describes the 
bubbles’ dynamics. This equation is derived by assuming spherical symmetry and applying the Navier–Stokes equations 
projected onto the radial coordinate. It is written in complete form as: 
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(𝑃𝑃𝑚𝑚(𝑑𝑑) − 𝑃𝑃(𝑑𝑑))
 

and 𝑃𝑃𝑚𝑚 is calculated as: 

𝑃𝑃𝑚𝑚(𝑑𝑑) = 𝑃𝑃𝑔𝑔 −
2𝜎𝜎
𝑑𝑑

+ 3�
𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟
𝑑𝑑𝑟𝑟

∞

𝑅𝑅
 

Here the shear stress 𝜏𝜏𝑟𝑟𝑟𝑟 is defined as: 
𝜏𝜏𝑟𝑟𝑟𝑟 = 𝐺𝐺𝛾𝛾𝑟𝑟𝑟𝑟 + 𝜇𝜇𝛾𝛾

.
𝑟𝑟𝑟𝑟 

 
This differential equation expresses the bubble radius as a function of time (𝑑𝑑 ) when the vapour bubble is subject to 

an external pressure field, 𝑃𝑃(𝑑𝑑) . The properties of the fluid are 𝜌𝜌, 𝜇𝜇  and  𝜎𝜎, respectively, the density, dynamic viscosity 
and surface tension of the liquid. These parameters depend strongly on the liquid temperature 𝑇𝑇 , therefore requiring the 
KM equation to be solved together with the energy equation. The terms on the left-hand side represent the inertial 
contributions to momentum along the radial direction, while the terms on the right-hand side represent the instantaneous 
tension or driving force due to the pressure difference, and contributions of the kinematic viscosity and surface tension to 
the bubble dynamics. The shear stress is significant when dealing with viscoelastic materials. The Voigt model was used in 
this work according to what was done by Yang et al. [2] In the formulation of the shear stress,  𝐺𝐺 is the shear modulus,  𝛾𝛾𝑟𝑟𝑟𝑟 
is the strain, and 𝛾𝛾

.
𝑟𝑟𝑟𝑟  is the strain rate. 

Figure [1] shows that bubble oscillations and pressure fluctuations have two different time scales, which justifies the choice 
of de-coupling the flow field and the bubbles’ dynamics in the numerical algorithm.  

 
Figure 1 Solution of the KM equation describing a bubble oscillating because of an imposed sinusoidal pressure variation.  

The KM equation is solved via a semi-implicit method with the time step set to be smaller than 1e-9 s. Following the 
domain of existence of bubbles proposed by Louisnard [3], the collapse of the bubbles is assumed to happen when the 
pressure amplitude falls below the Blake threshold pressure, which is the minimum pressure that guarantees the existence 
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of cavitation bubbles. The collapse is represented by simply assuming the instantaneous disappearance of gas bubbles and 
imposing the volume fraction of liquid equal to one. From a physical point of view, the energy stored in the oscillating 
bubbles is released in a tiny portion of space during the bubbles’ collapse. 
 Note that interaction between bubbles is neglected as the dynamic cloud interaction parameter (𝐵𝐵) is low for the cases 
considered . The latter is a function of bubbles number density ( 𝑁𝑁𝑏𝑏), bubble radius ( 𝑑𝑑𝑏𝑏) and cloud radius ( 𝑑𝑑𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜): 

  

𝐵𝐵 =
𝑁𝑁𝑏𝑏𝑑𝑑𝑏𝑏
𝑑𝑑𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜

, 

 
where   is the dimension of the bubbles’ cloud, generally 3-4 orders of magnitude larger than the bubbles’ average 

radius for the cases studied. 
 
2.2 Flow Modeling 

An Eulerian volume-of-fluid (VoF) method is adopted to model the two-phase flow, describing the dynamics of two-
phase compressible fluids with a unified velocity u, pressure 𝑃𝑃, and temperature T. In the following, the computational 
domain is defined as Ω ∈ 𝑑𝑑𝟛𝟛 while the two subsets 𝛺𝛺1 and 𝛺𝛺2 represent the liquid and gas phase, respectively. The 
intersection of the two subsets is the interface  Γ ∈ 𝑑𝑑𝟚𝟚. The interface Γ can be seen as the boundary between two adjacent 
phases, 𝛺𝛺1  and 𝛺𝛺2 . A phase indicator function captures the evolution of the interface: 
  

𝑓𝑓(x, 𝑑𝑑) = �1 x ∈ 𝛺𝛺1(𝑑𝑑),
0 x ∉ 𝛺𝛺2(𝑑𝑑), 

 
Referring to the liquid phase and indicated with Ω1. The next step is discretizing the computational domain by 

dividing it into a discrete number of control volumes (computational cells) 𝐶𝐶𝑜𝑜 for 𝐶𝐶𝑜𝑜 = 𝑙𝑙 = 1, . . ,𝑁𝑁𝑐𝑐. 
In the context of a finite volume representation, at a given time, the variable   determines the volume fraction of 

liquid in a given computational cell: 
  

𝛼𝛼𝑜𝑜(𝑑𝑑) ≡
1
𝑉𝑉𝑜𝑜
� 𝑓𝑓(x, 𝑑𝑑)𝑑𝑑𝑉𝑉
𝐶𝐶𝑙𝑙

, 

 
where 𝑉𝑉𝑜𝑜 is the control volume of the l-th cell, note that the liquid volume fraction is a continuous variable, although it is 
defined as a cell-averaged quantity. The liquid volume fraction, therefore, takes on the value: 
 

𝛼𝛼(x, 𝑑𝑑) = �
1 within the liquid,

]0,1[ at the interface,
0 within the gas.

 

 
For consistency, α is defined as the liquid volume fraction, while 1 − α is the gas volume fraction. All local physical 

quantities are calculated as a linear combination of the properties of the two phases. The local quantity in the liquid and 
gas phase also depends, in general, on the composition of the mixture. A general physical property ψ is then expressed 
as:   
 

𝜓𝜓 = α𝜓𝜓1 + (1 − α)𝜓𝜓2, 
 
The transport equation for the volume fraction of a compressible fluid experiencing phase change is expressed as 
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𝜕𝜕(𝛼𝛼𝜌𝜌)
𝜕𝜕𝑑𝑑

+ ∇ ⋅ (𝛼𝛼𝜌𝜌u) = −𝑚𝑚
˙
𝛿𝛿Γ, 

where   is the mass exchange rate due to phase change across the interface and   is the surface area density at the interface 
which is given by the surface of the bubbles present in the computational cell. The mass exchange flux contribution has a 
negative sign if the liquid evaporates and a positive sign if the vapour condenses. On the other hand, the mass and momentum 
conservation equations describe the bulk fluid motion, noting that the incompressibility assumption does not hold in the 
bubble bursts because of the high velocities resulting from severe pressure gradients within the droplet. The continuity and 
momentum equations are expressed, respectively, as follows: 

  
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

+ ∇ ⋅ (𝜌𝜌u) = 0, 

𝜕𝜕(𝜌𝜌u)
𝜕𝜕𝑑𝑑

+ ∇ ⋅ (𝜌𝜌uu) = ∇ ⋅ [𝜇𝜇(∇u + ∇u𝑇𝑇)] − ∇𝑃𝑃 + f𝒔𝒔 + 𝜌𝜌g, 

 
where g represents the gravitational acceleration,  𝜇𝜇 is the dynamic viscosity, and  f𝒔𝒔 is the surface tension force. 

The surface tension force  f𝒔𝒔 is important and generally modelled with the continuum surface force (CSF) method, 
introduced in reference: 

  
f𝒔𝒔 = 𝜎𝜎𝜎𝜎n, 

 
where  𝜎𝜎 is the surface tension coefficient, n is the unit normal vector to the interface and 𝜎𝜎 is the curvature, expressed as 
the divergence of the normalized gradient of the volume fraction: 
 

𝜎𝜎 = −∇ ⋅ �
∇𝛼𝛼

|∇𝛼𝛼|
� 

 
Finally, the energy equation is also solved to determine the liquid temperature: 

 
𝜕𝜕�𝜌𝜌𝑐𝑐𝑝𝑝𝑇𝑇�

𝜕𝜕𝑑𝑑
+ ∇ ⋅ �𝜌𝜌𝑐𝑐𝑝𝑝u𝑇𝑇� = ∇ ⋅ (𝑘𝑘∇𝑇𝑇) − m

.
Δ𝐻𝐻𝑣𝑣 , 

 
where the last term describes the enthalpy of vaporization exchanged because of the eventual phase change,  𝑘𝑘 is the thermal 
conductivity,  𝑐𝑐𝑝𝑝 is the heat capacity at constant pressure, and  Δ𝐻𝐻𝑣𝑣  is the heat of vaporization. The energy equation 
formulation above neglects the terms associated with pressure and viscous stresses, which are typically small. 
By solving the KM equation, the source term 𝑚𝑚

.
  is calculated as: 

 

𝑚𝑚
.

= 4𝛼𝛼2
𝜌𝜌1𝜌𝜌2
𝜌𝜌𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 

 
𝑑𝑑  is the average radius of the bubbles present in the individual cells, the source term is then included in the volume 

fraction equation. An operator-splitting approach is employed in its solution procedure. 
 

Solving the momentum equation starts from considering the following linearization: 
  

𝜌𝜌∗u𝑛𝑛+1 − 𝜌𝜌𝑛𝑛u𝑛𝑛

Δ𝑑𝑑
+ ∇ ⋅ (𝜌𝜌u∗u𝑛𝑛+1) = ∇ ⋅ (𝜇𝜇(u∗∇ + ∇(u∗)𝑇𝑇)) − ∇𝑃𝑃𝑛𝑛+1 + f𝒔𝒔 + ∇(𝜌𝜌∗)g ⋅ x 
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The momentum equation is then discretized as: 
 

ℳu = −∇𝑃𝑃 + f𝒔𝒔 + ∇(𝜌𝜌)g ⋅ x, 
 
 
where ℳ  is the coefficients matrix of the velocity vector. The coefficients matrix is further decomposed, resulting in the 
following formulation: 

 
𝒜𝒜u𝑛𝑛+1 = ℋ(u∗) − ∇𝑃𝑃𝑛𝑛+1 + f𝑟𝑟 + ∇(𝜌𝜌∗)g ⋅ x, 

 
where  𝒜𝒜 and ℋ  represent the diagonal and off-diagonal terms of the coefficients matrix, the superscript   denotes the 
provisional values of the variables in the iterative solution procedure. 
The pressure equation is derived from the conservation of momentum and volume fraction of the liquid, resulting, after 
linearization, in the following: 

�
𝛼𝛼1∗

𝜌𝜌1∗
𝜕𝜕𝜌𝜌1∗

𝜕𝜕𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡
+
𝛼𝛼2∗

𝜌𝜌2∗
𝜕𝜕𝜌𝜌2∗

𝜕𝜕𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡
� �

𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑛𝑛+1 − 𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑛𝑛

Δ𝑑𝑑
+ u∗ ⋅ ∇𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑛𝑛+1� + ∇ ⋅ u𝑛𝑛+1 − 𝑚𝑚

. ∗ �
1
𝜌𝜌1∗
−

1
𝜌𝜌2∗
� 𝛿𝛿Γ = 0 

 
The pressure equation is solved implicitly after an additional linearization step. For the cases considered in this 

work, the discretized transport equations were solved using the PIMPLE method, which combines the Pressure Implicit 
with 

Splitting of Operators (PISO) and Semi-Implicit Method for Pressure Linked Equations (SIMPLE) iterative 
procedures. The momentum and pressure equations are solved sequentially until convergence is achieved. In particular, 
the Geometric Agglomerated Algebraic Multigrid (GAMG) strategy was utilized to solve the pressure equation. 

A second-order Gauss linear reconstruction was employed for the spatial discretization, except for the convective 
terms of the volume fraction and momentum equations. The newly developed solver was implemented in the 
OpenFOAM v2023 framework. The main steps of the solution procedure are listed in the following algorithm: 

The newly developed solver was implemented in the OpenFOAM v2306 framework. The main steps of the solution 
procedure are listed in the following algorithm: 
 

 
Figure 2 Algorithm of the numerical solver. 
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3. Discussion 

The solver was used to simulate two cases. The first case was an attempt at replicating an experiment presented in the 
the work of [6]. The mesh is reported in Figure 3 on the left while a snapshot from the numerical simulation results is reported 
on the right. The figure illustrates the beam formation because of the propagation of the pressure waves. The system is 
simulated by imposing a sinusoidal boundary condition for the pressure having a maximum amplitude of 0.5 MHz. The cell 
size at the focal point is approximately 10 μ𝑚𝑚  x 10 𝜇𝜇𝑚𝑚 x 10 𝜇𝜇𝑚𝑚 while in the rest of the domain it scales until it reaches 1 
𝑚𝑚𝑚𝑚. The second application consisted of a numerical simulation of cavitation induced with the same system in a blood 
vessel (Figure 4). The blood vessel was simulated by simply changing the physical properties of the liquid in the region 
identified by its presence. It is possible to notice how the bubbles form preferentially on the surface of the vessel.  
 
4. Conclusions 

This work presents the first step towards realising a predictive model for simulating ultrasonically induced cavitation in 
biological fluids. The framework was realized with the scope of evaluating bubbles' cloud location, size and cavitation 
intensity, thus allowing full control of the treatment. Two major approximations are associated with this model: the 
assumption of a cavitation threshold and a nucleation rate. In fact, the model totally depends on how many bubbles we allow 
to form within the computational domain, defeating the purpose of creating a predictive framework. Another limitation of 
this model is that it does not allow to estimate damage on a given tissue since the jet formation can’t be resolved with the 
resolution adopted in this work. The future development will target the introduction of two distinct areas in the computational 
domain, the first, aimed at waves propagation and the second aimed at accurately simulate cavitation at a much smaller scale.  
 
 

 

 

  
Figure 3 On the left a 3D view of the computational domain. The circular region on top represents the discretized transducer. On 

the right a snapshot for the simulation. It is possible to clearly observe the structure of the ultrasound beam.  
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Figure 4 Numerical simulation of UIC induced in a blood vessel by applying an ultrasonic force at a frequency of 1 MHz with a 

driving pressure of 1MPa. Figure a), b) and c) show three different steps in the cavitation process. The upper pictures illustrate an 
orthogonal view of the cavitation cloud, while the bottom pictures show the entire domain. The cloud is visualized by creating spheres 

having a volume 𝑉𝑉 = (1 − 𝛼𝛼)𝑉𝑉𝑐𝑐𝑟𝑟𝑜𝑜𝑜𝑜. 
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