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Abstract - The one-fluid formulation of the governing equations of fluid motion is an accepted methodology to solve two-phase flows. 
The discontinuity at the phase interface is regularized as a single fluid with varying properties and additional source terms are added, 
such as surface tension, to satisfy jump conditions. While such an approach is well-suited for non-evaporative flows, multiple 
inconsistencies arise in flows undergoing phase change due to the local volume dilatation at the interface, both in terms of analytical 
description and numerical discretization, that may affect the flow dynamics. That is, the numerical solution is more sensitive to the choice 
of formulation and discretization of the governing equations, as well as the interface capturing method, e.g., Volume-of-Fluid (VOF). 
Starting from the non-conservative one-fluid formulation of the momentum equation for incompressible flows, corrections to the 
momentum balance are implemented in the presence of phase change. The addition of two body forces in the context of the Continuum 
Surface Force model and the definition of two predictor-projection steps (pressure-velocity coupling) have been shown to recover the 
correct pressure jump in the limit of low viscosity while using standard discretization schemes in the one-fluid framework. However, 
issues remain with the regularization of the viscous term due to the discrete evaluation of the one-fluid velocity gradients, creating a 
momentum imbalance. Within a sharp VOF framework, various methods to correct the viscous term are analysed and discussed by 
considering a saturated vapor bubble growing in superheated liquid of a highly viscous fluid designed for numerical validation purposes. 
 
Keywords: boiling flows, volume-of-fluid, one-fluid formulation, momentum balance, phase change 
 
 
1. Introduction 

The development of accurate multiphase flow solvers is a challenging pursuit, especially when significant phase change 
occurs such as in liquid fuel evaporation during injection [1], coolant boiling in heat exchangers [2] or hydrogen bubble 
formation in water electrolysis [3]. The one-fluid formulation of the Navier-Stokes equations where the two phases are treated 
as a single fluid whose properties are regularized across the resolved interface is widely used [4]-[6]. Moreover, this method 
ensures jump conditions are satisfied by including additional source terms localized at the interface, such as surface tension 
in the momentum equation [7]. Recently, Trujillo [8] has shown that, despite conservative and non-conservative forms of 
the governing equations are used interchangeably in the literature, their equivalency at the interface is only true in the limit 
of non-evaporative flows. For example, the non-conservative form of the one-fluid momentum equation is widely used in 
phase change simulations, e.g., see [6], perhaps due to the simplicity of directly extending existing codes. However, 
inconsistencies arise from the time derivative and convective terms when phase change occurs that cause a momentum 
imbalance at the interface. In contrast, a conservative formulation may recover the exact momentum jump. Note that beyond 
the analytical evaluation of the jump conditions from the governing equations, other errors may be introduced by the choice 
of numerical method, integration and discretization techniques. 

Using a geometric Volume-of-Fluid (VOF) method to capture the interface due to its mass-conserving properties and 
sharp interface representation, [9] has shown that the addition of two body forces within the context of the Continuum Surface 
Force (CSF) model [7] and a careful rethinking of the pressure-velocity coupling algorithm are able to recover the exact 
momentum balance across the interface for fluids with low viscosity in a non-conservative formulation, resulting in a physical 
pressure jump. Thus, this one-fluid framework more suited for a sharp VOF approach can provide a consistent solution 
similar to Ghost Fluid Methods (GFM) [10]. Moreover, the momentum imbalance in the non-conservative framework is also 
evident in configurations where the impact of phase change is seemingly negligible, with the additional body forces and 
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algorithm steps resulting in a smoother temporal evolution of the pressure jump and slightly different flow dynamics (e.g., 
change in rise velocity of a vaporizing bubble).  

Problems with the momentum imbalance in the one-fluid formulation resurface when the viscosity of the fluid is high 
due to the ill-defined discrete evaluation of the viscous term, i.e., the gradient of a velocity field that varies sharply across 
the interface. Independent of the choice between conservative and non-conservative formulation of the momentum equation, 
this issue also affects the flow dynamics, such as delaying the instability growth and bubble formation in film boiling [9]. In 
this paper, the numerical framework and momentum balance corrections described in [9] are summarized. Then, various 
approaches to attempt to obtain the correct momentum jump when viscosity dominates are explored and discussed within 
the possibilities of a VOF framework. 

 
2. Governing Equations and Numerical Methods 

This section briefly summarizes the main features of the flow solver described in [9] to study incompressible evaporating 
two-phase flows. For further details related to, e.g., the discretization of the various terms, the definition of a thin interfacial 
region ΩΓ and its regularization, the time step evaluation or the validation of the solver, the reader is referred to [9] and the 
references therein. Note that the numerical framework is based on a Cartesian uniform grid with staggered velocity 
components. 

 
2.1. Volume-of-Fluid Framework 

A geometrical VOF based on the local reconstruction of the interface at each cell is used. The interface shape, orientation 
and cut volumes are obtained from a Piecewise Linear Interface Construction (PLIC) where the normal unit vector 𝒏𝒏Γ 
(pointing from liquid to gas) and curvature 𝜅𝜅 (defined positive for convex liquid shape) are obtained, respectively, from the 
Mixed-Youngs-Center method and Height Function method [9]. Additionally, the calculations of geometric fluxes and 𝜅𝜅 are 
enhanced by a Piecewise Parabolic Interface Construction (PPIC) via the Interface Reconstruction Library [11]. If the PPIC 
reconstruction is ill-defined, the method defaults back to standard PLIC. Then, the interface is advected by solving Eq. (1) 
for the phase indicator Χ which includes an additional source term due to the mass transfer across phases. Here, Χ = 1 in the 
liquid. The advection is performed by first shifting the interface plane along nΓ to account for phase change [6] and, then, 
using a conservative split advection scheme with a divergence-free phase-wise velocity [5]. Note that the volume fraction is 
given by 𝐶𝐶 = 1

𝑉𝑉𝑐𝑐
∫ X𝑑𝑑𝑑𝑑𝑉𝑉𝐶𝐶

, where 𝑑𝑑𝑐𝑐 is the cell volume; �̇�𝑚′ is the mass flux per unit area (�̇�𝑚′ > 0 for vaporization) and 𝛿𝛿Γ is a 
Dirac delta function only active at the interface; and the phase-wise velocity and density in Eq. (1) are representative of the 
liquid (L) or gas (G) phase depending on whether the flow is laden with droplets or bubbles [5]. 

 
𝜕𝜕Χ
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (Χu𝐿𝐿)− Χ(∇ ⋅ u𝐿𝐿) = −
�̇�𝑚′
𝜌𝜌𝐿𝐿
𝛿𝛿Γ (1) 

 
2.2. Mass and Momentum Transport 

The non-conservative one-fluid formulation of the Navier-Stokes equations for incompressible two-phase flows 
undergoing phase change are given by the continuity equation, Eq. (2), and the momentum equation, Eq. (3), 

 

∇ ⋅ u = �̇�𝑚′ �
1
𝜌𝜌𝐺𝐺

−
1
𝜌𝜌𝐿𝐿
� 𝛿𝛿Γ (2) 

  

𝜌𝜌 �
𝜕𝜕u
𝜕𝜕𝜕𝜕

+ u ⋅ ∇u� = −∇𝑝𝑝 + ∇ ⋅ T + 𝜌𝜌g + f𝜎𝜎 + f�̇�𝑚′ + f𝑁𝑁𝑁𝑁   (3) 

 
where u is the one-fluid velocity, 𝑝𝑝 the pressure, g the gravity acceleration, T = 𝜇𝜇[∇u + ∇u𝑇𝑇] the viscous stress tensor, 𝜌𝜌 
and 𝜇𝜇 the volume-averaged density and viscosity, e.g., 𝜌𝜌 = 𝜌𝜌𝐿𝐿𝐶𝐶 + 𝜌𝜌𝐺𝐺(1− 𝐶𝐶), 𝜎𝜎 the surface tension coefficient, and f𝜎𝜎 =
−𝜎𝜎𝜅𝜅nΓ𝛿𝛿Γ. The terms f�̇�𝑚′ = −(�̇�𝑚′)2(𝜌𝜌𝐺𝐺−1 − 𝜌𝜌𝐿𝐿−1)nΓ𝛿𝛿Γ and f𝑁𝑁𝑁𝑁 = 𝜌𝜌�̇�𝑚′(𝜌𝜌𝐺𝐺−1 − 𝜌𝜌𝐿𝐿−1)(u ⋅ nΓ)nΓ𝛿𝛿Γ are additional body forces 
discretized in the context of the CSF model to recover the exact momentum balance across the interface in the limit of low 
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viscosity flows [9]. This momentum balance normal to the interface is given in terms of a pressure jump, i.e., Eq. (4). Tangent 
to the interface, the velocity and shear stress are continuous. 
 

𝑝𝑝𝐿𝐿 − 𝑝𝑝𝐺𝐺 = 𝜎𝜎𝜅𝜅 + (�̇�𝑚′)2 � 1
𝜌𝜌𝐺𝐺
− 1

𝜌𝜌𝐿𝐿
� + ([T𝐿𝐿 − T𝐺𝐺] ⋅ nΓ) ⋅ nΓ, (4) 

 
The flow solver is based on the predictor-projection approach by Chorin [12], modified with two predictor-projection 

steps, coupled to the extension of the split pressure gradient method by Cifani [13]. Altogether, a direct pressure solver can 
be used, which is computationally more efficient than other iterative methods [4]. As shown in [9], the addition of a first 
predictor-projection step is necessary to address the impact on the momentum balance of the time derivative in Eq. (3). This 
step evaluates a predicted velocity u∗ = u𝑛𝑛 − ∇𝜓𝜓 resulting from the shift in the Stefan flow across the interface from time 
𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1 using a velocity potential 𝜓𝜓. In other words, solving the Poisson equation, Eq. (5), with the direct solver. Then, 
the standard predictor-projection approach, e.g., [13], is used to evaluate a predicted velocity u∗∗ from u∗ in Eq. (3) and to 
obtain u𝑛𝑛+1 and 𝑝𝑝𝑛𝑛+1, where f𝑁𝑁𝑁𝑁 takes care of cancelling the ill-defined one-fluid convective term at the interface while f�̇�𝑚′ 
adds the correct momentum jump caused by the change of phase [9]. In summary, the corrections to the momentum balance 
are defined by the addition of a “pre-conditioner” predictor-projection step and the two forces f�̇�𝑚′ and f𝑁𝑁𝑁𝑁. 

 

∇2𝜓𝜓 = ∇ ⋅ u𝑛𝑛 − ∇ ⋅ u∗ = �̇�𝑚′ �
1
𝜌𝜌𝐺𝐺

−
1
𝜌𝜌𝐿𝐿
� 𝛿𝛿Γ�

𝑛𝑛
− �̇�𝑚′ �

1
𝜌𝜌𝐺𝐺

−
1
𝜌𝜌𝐿𝐿
� 𝛿𝛿Γ�

𝑛𝑛+1
 (5) 

 
The preliminary shift of the Stefan flow follows the practice of advecting the interface before solving the Navier-Stokes 

equations, which results in the use of volume-averaged fluid properties at 𝜕𝜕𝑛𝑛+1 [4]. Thus, variables tightly related to the 
interface location, such as the Stefan flow, must correspond to 𝜕𝜕𝑛𝑛+1. In practice, the use of u∗ instead of u𝑛𝑛 in the evaluation 
of Eq. (3) has a minimal impact in the single-phase region, but becomes necessary in ΩΓ where u varies sharply. However, 
the approach embeds the assumption that the interface regression with respect to the fluid is a quasi-steady process; thus, 
any information of the change in Stefan flow from 𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1 is removed from the obtained pressure field everywhere. 

 
2.3. Energy Transport 

The energy equation is given in its non-conservative form by Eq. (6), where 𝑇𝑇 is the temperature, 𝑐𝑐𝑝𝑝 the isobaric specific 
heat and 𝑘𝑘 the thermal conductivity. Following previous literature, e.g., [14], the energy equation is solved in a phase-wise 
manner. Here, each phase is treated separately with the interface as a deforming boundary embedded in the discretization of 
Eq. (6). Then, the interface thermodynamic state is implicitly accounted for and no additional source terms are needed. For 
the purpose of this work, the interface remains at saturation conditions given the system pressure; thus, its temperature is 
given by 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠. The mass flux across the interface is evaluated from Eq. (7), where ℎ𝐿𝐿𝑉𝑉 is the latent heat of vaporization. The 
temperature gradients normal to the interface are obtained with the normal probe technique described in [9]. 

 

𝜌𝜌𝑐𝑐𝑝𝑝 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ u ⋅ ∇𝑇𝑇� = ∇ ⋅ (𝑘𝑘∇𝑇𝑇)  (6) 

  

�̇�𝑚′ =
[𝑘𝑘𝐺𝐺∇𝑇𝑇𝐺𝐺 − 𝑘𝑘𝐿𝐿∇𝑇𝑇𝐿𝐿] ⋅ nΓ

ℎ𝐿𝐿𝑉𝑉
 (7) 

           
3. Results 
3.1. Momentum Balance Recovery in Low Viscosity 

A couple of validation tests with an imposed �̇�𝑚′ for which an analytical solution can be obtained (see [9]) are meant to 
highlight the momentum balance corrections introduced in Section 2.2 by looking at the improvement in the calculation of 
the pressure field. For both tests, �̇�𝑚′ = 10 kg/(m2s) and the properties of each phase are 𝜌𝜌𝐿𝐿 = 500 kg/m3, 𝜇𝜇𝐿𝐿 = 50 𝜇𝜇Pa·s, 
𝜌𝜌𝐺𝐺 = 100 kg/m3 and 𝜇𝜇𝐺𝐺 = 25 𝜇𝜇Pa·s. In [9], the performance of the flow solver is further addressed by considering a wide 
range of density and viscosity ratios, different surface tension coefficients, dynamic configurations, and the coupling with 
the energy equation. The first test (shown in Fig. 1a) analyses a liquid pool sitting on a wall located at 𝑥𝑥 = 0 with the interface 
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initially at 𝑥𝑥0 = 25 mm. Interface deformation is neglected, thus a one-dimensional evolution is expected. In contrast, the 
second test looks at the evaporation of a static droplet (three-dimensional) of an initial radius 𝑟𝑟0 = 12.5 mm and a surface 
tension coefficient 𝜎𝜎 = 1 mN/m. In both cases, a reference pressure of 0 Pa is imposed in the gaseous domain boundary, 
which is set sufficiently far away from the liquid-gas interface, and a mesh size of 0.390625 mm is used. 

  
(a) One-dimensional liquid surface (b) Static evaporating droplet 

  
Fig. 1: Validation tests of the momentum balance corrections in the limit of low viscosity in terms of the pressure field 
solution. (a) one-dimensional evaporating liquid surface at 𝜕𝜕 = 0.2 s; (b) static droplet evaporation at 𝜕𝜕 = 0.1 s. 

 
As shown in Fig. 1, the addition of the corrective body forces and predictor-projection step shifting the Stefan flow 

recover both the correct pressure jump across the interface and the analytical solution. Note that for the droplet, the analytical 
solution is derived under the quasi-steady state assumption of the interface regression discussed in Section 2.2 [9]. In 
particular, the non-corrected formulation results in a higher liquid pressure in the one-dimensional case, while a smaller 
pressure is obtained in the gas in the droplet case. Note that this is partially a result of the interaction between an ill-defined 
momentum balance and the boundary conditions of each problem, as well as the quasi-steady assumption. Noteworthy, the 
corrections only affect the consistency of the pressure field since the velocity is imposed via Eq. (2). While this seems to not 
be problematic when analysing static configurations, such as the evaporation of a droplet or the growth of a bubble, the 
prediction of an ill-defined pressure balance does affect dynamic cases [9]. 
 
3.2. Discretization of the Viscous Term 

For highly viscous flows, the regularization of the viscous term in Eq. (3) fails. This has no direct relation with the 
manner in which 𝜇𝜇 is averaged (i.e., arithmetic vs. harmonic mean) in the vaporizing fluid, but rather is a result of the discrete 
evaluation of ∇u when the velocity varies sharply across ΩΓ. As a result, a momentum imbalance is again introduced, usually 
resulting in a pressure spike across the interface, that can affect the dynamical evolution of the two-phase flow. This direct 
evaluation of T is referred to as one-fluid approach in what follows. In this work, three other approaches to improve the 
discretization of 𝐓𝐓 within the one-fluid framework are proposed and analysed. For all of them, the term is treated phase-wise 
and standard second-order differentiation in the staggered mesh is used. That is, no averaging is performed for 𝜇𝜇 and a 
constant value 𝜇𝜇𝐿𝐿 or 𝜇𝜇𝐺𝐺  is selected depending on the predominant phase in the cell, e.g., 𝜇𝜇𝐿𝐿 if 𝐶𝐶 ≥ 0.5 in the staggered cell 
used for the discretization of Eq. (3). The same criterion is used to select a phase-wise velocity, determined as follows. 

The first approach (I) consists of performing a constant extrapolation normal to the interface of the velocity components 
in each cell, effectively obtaining two phase-wise velocities u𝐺𝐺 and u𝐿𝐿. An efficient Fast Marching Method (FMM) [15] can 
be integrated in the VOF framework for this purpose [9]. While the use of u𝐺𝐺 and u𝐿𝐿 will improve the calculation of the 
velocity gradients and mitigate the pressure spike in the viscous term, u𝐺𝐺 and u𝐿𝐿 are not divergence-free by construction.  

The second approach (II) consists in constructing u𝐺𝐺 and u𝐿𝐿 such that ∇ ⋅ u𝐺𝐺 = 0 and ∇ ⋅ u𝐿𝐿 = 0. Different methods can 
be used to achieve this. In particular, one of the phase-wise velocities satisfying the divergence-free condition is already 
obtained during the VOF advection step, depending on the two-phase configuration, as discussed in Section 2.1. The other 
may be obtained by solving a Poisson equation in a narrow band around the interface, such as in [6], which can be certainly 
expensive in some scenarios and defeats the purpose of working with direct solvers in the predictor-projection steps.  
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The third and last approach (III) takes a different route. A constant extrapolation normal to the interface of the velocity 
gradient is performed with the FMM technique, obtaining the phase-wise gradients ∇u𝐺𝐺 and ∇u𝐿𝐿. These replace the discrete 
gradients in 𝐓𝐓 if, when calculated with u, velocity values across ΩΓ are used. That is, where �̇�𝑚′(𝜌𝜌𝐺𝐺−1 − 𝜌𝜌𝐿𝐿−1)𝛿𝛿Γ ≠ 0. Since a 
constant extrapolation of ∇u along nΓ results in, e.g., ∇2u𝐺𝐺 ≈ 0 along nΓ, a pressure jump across ΩΓ due to the viscous 
stresses is not expected to be obtained numerically. In other words, the viscous term is effectively cancelled in ΩΓ, similar 
to how f𝑁𝑁𝑁𝑁 cancels the convective term. As discussed in [9], this is not problematic since u𝑛𝑛+1 in ΩΓ is entirely driven by 
Eq. (2), but requires the addition of a body force to impose the physical pressure gradient or jump across the interface, such 
as f�̇�𝑚′. For the viscous stress jump, a new regularized force f𝜇𝜇 = [T𝐺𝐺 − T𝐿𝐿] ⋅ nΓ𝛿𝛿Γ is added to the right-hand side of Eq. (3) 
and treated similar to the other forces in the flow solver [9]. It is calculated based on the actual viscous stress jump in the 
momentum balance (see Eq. (4)), with T𝐺𝐺 and T𝐿𝐿 using phase-wise viscosities and velocity gradients, i.e., those extrapolated 
with the FMM. While f�̇�𝑚′ and f𝑁𝑁𝑁𝑁 are purely built upon a one-fluid formulation, the phase-wise discretization of the viscous 
term and addition of f𝜇𝜇 are related more closely to the GFM [10]. 

 
3.3. Static Bubble Growth in Superheated Liquid 

The proposed corrections to the viscous term in the momentum equation are tested in a configuration involving a static 
saturated vapor bubble growing in superheated liquid. Analytical solutions under spherical symmetry for the bubble radius, 
Eq. (8), and temperature evolution in the liquid, Eq. (9), are given by Scriven [16], with 𝛽𝛽 being the growth constant 
calculated with Eq. (10), 𝑇𝑇∞ the superheated temperature, and 𝛼𝛼 = ℎ𝐿𝐿𝑉𝑉 + �𝑐𝑐𝑝𝑝,𝐿𝐿 − 𝑐𝑐𝑝𝑝,𝐺𝐺�(𝑇𝑇∞ − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠). Further, an approximate 
analytical solution for the radial velocity is given by Eq. (11), which is obtained directly from the continuity equation by 
decoupling its calculation from the pressure. Then, by substitution into the radial momentum equation under the assumptions 
that 𝑝𝑝𝑟𝑟→∞ = 0 and that the interface regression is a quasi-steady process, an equation for the pressure radial distribution, Eq. 
(12), is obtained. In Eqs. (11) and (12), 𝑈𝑈𝐿𝐿 = �̇�𝑚′(𝜌𝜌𝐺𝐺−1 − 𝜌𝜌𝐿𝐿−1) as a result of the velocity jump across the interface. 

 

𝑅𝑅(𝜕𝜕) = 2𝛽𝛽�
𝑘𝑘𝐿𝐿

𝑐𝑐𝑝𝑝,𝐿𝐿𝜌𝜌𝐿𝐿
𝜕𝜕  (8) 

  

𝑇𝑇(𝑟𝑟, 𝜕𝜕) = 𝑇𝑇∞ − 2𝛽𝛽2 �
𝜌𝜌𝐺𝐺𝛼𝛼
𝜌𝜌𝐿𝐿𝑐𝑐𝑝𝑝,𝐿𝐿

� � exp �−𝛽𝛽2 �(1 − 𝜉𝜉)−2 − 2 �1 −
𝜌𝜌𝐺𝐺
𝜌𝜌𝐿𝐿
� 𝜉𝜉 − 1�� 𝑑𝑑𝜉𝜉

1

1−𝑅𝑅(𝑠𝑠)/𝑟𝑟

 (9) 

  
𝜌𝜌𝐿𝐿𝑐𝑐𝑝𝑝,𝐿𝐿(𝑇𝑇∞ − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)

𝜌𝜌𝐺𝐺𝛼𝛼 
= 2𝛽𝛽2� exp �−𝛽𝛽2 �(1 − 𝜉𝜉)−2 − 2 �1 −

𝜌𝜌𝐺𝐺
𝜌𝜌𝐿𝐿
� 𝜉𝜉 − 1�� 𝑑𝑑𝜉𝜉

1

0
 (10) 

  

𝑢𝑢𝑟𝑟(𝑟𝑟, 𝜕𝜕) = �
0                          if 𝑟𝑟 < 𝑅𝑅(𝜕𝜕)
𝑈𝑈𝐿𝐿(𝑅𝑅(𝜕𝜕)/𝑟𝑟)2     if 𝑟𝑟 ≥ 𝑅𝑅(𝜕𝜕)  (11) 

  

𝑝𝑝(𝑟𝑟, 𝜕𝜕) =

⎩
⎪
⎨

⎪
⎧ −

1
2
𝜌𝜌𝐿𝐿𝑈𝑈𝐿𝐿2 − 𝜎𝜎𝜅𝜅 − (�̇�𝑚′)2 �

1
𝜌𝜌𝐺𝐺

−
1
𝜌𝜌𝐿𝐿
� + 4

𝜇𝜇𝐿𝐿
𝑅𝑅(𝜕𝜕)

𝑈𝑈𝐿𝐿        if 𝑟𝑟 < 𝑅𝑅(𝜕𝜕)

−
1
2
𝜌𝜌𝐿𝐿𝑈𝑈𝐿𝐿2 �

𝑅𝑅(𝜕𝜕)
𝑟𝑟 �

4

                                                             if 𝑟𝑟 ≥ 𝑅𝑅(𝜕𝜕) 
 (12) 

 
A specific set of fluid properties used in [6] or [14] based on a “test” fluid for validation purposes are shown to be 

problematic for the momentum balance due to the high fluid viscosity despite not affecting the overall growth of the bubble 
and evolution of the temperature field due to the static configuration [9]; thus, it highlights the intrinsic issues in the 
discretization of the viscous term. The properties of the test fluid are 𝜌𝜌𝐿𝐿 = 2.5 kg/m3, 𝜇𝜇𝐿𝐿 = 7 mPa·s, 𝑘𝑘𝐿𝐿 = 70 mW/(m·K), 
𝑐𝑐𝑝𝑝,𝐿𝐿 = 2.5 J/(kgK), 𝜌𝜌𝐺𝐺 = 0.25 kg/m3, 𝜇𝜇𝐺𝐺 = 0.7 mPa·s, 𝑘𝑘𝐺𝐺 = 7 mW/(m·K), 𝑐𝑐𝑝𝑝,𝐺𝐺 = 1 J/(kgK), 𝜎𝜎 = 1 mN/m, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 1 K and 
ℎ𝐿𝐿𝑉𝑉 = 100 J/kg. For this specific problem, 𝑇𝑇∞ = 3 K. The bubble size and temperature distribution are initialized with the 
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analytical solution at 𝜕𝜕 = 0.5 s (i.e., 𝑅𝑅0 ≈ 0.117 m). The domain is large enough to limit the influence of its boundaries on 
the bubble growth, which are defined as open boundaries. Three mesh sizes are considered, defined by mesh V1 (Δ𝑥𝑥 = 1/64 
m), mesh V2 (Δ𝑥𝑥 = 1/128 m) and mesh V3 (Δ𝑥𝑥 = 1/192 m). More details on the computational setup can be found in [9]. 

The validation against Scriven’s solution is performed up to 𝜕𝜕 = 2 s in [9]; thus, it is not included here since the scope 
of the paper is addressing the discretization of the viscous term. Fig. 2a shows the evolution of the bubble radius (obtained 
from the volume of the bubble) up to 𝜕𝜕 = 0.6 s with approach III, which converges with mesh refinement. One undesired 
effect of the different viscous term treatments is shown in Fig. 2b, which compares the radius evolution among all 
discretization approaches, including the one-fluid approach, with the finest mesh V3. With approach II, the bubble does not 
evolve spherically and the estimated radius deviates significantly from the analytical solution. In contrast, the other methods 
behave well, with approach III reproducing the results from the one-fluid approach the closest. Fig. 2c shows the convergence 
to the analytical solution of the temperature radial profile at 𝜕𝜕 = 0.6 s for approach III, extracted along the 𝑧𝑧 direction. Here, 
no major differences are appreciated between different methods. 

   
(a) Radius growth with approach III (b) Radius growth with mesh V3 (c) Temperature at 0.6 s with approach III 

   
Fig. 2: Validation of static vapor bubble growth in superheated liquid against Scriven’s analytical solution [16]. (a) mesh 

convergence of radius growth with approach III; (b) radius growth obtained with mesh V3 and different modelling approaches for the 
viscous term; (c) mesh convergence of temperature profile at 𝜕𝜕 = 0.6 s with approach III, extracted along the 𝑧𝑧 direction. 

 

 
 

Fig. 3: Pressure field inside and around the vapor bubble at 𝜕𝜕 = 0.6 s on an 𝑥𝑥𝑥𝑥 plane across the bubble. The various 
approaches to discretize the viscous term are shown with mesh V1 (top) and mesh V3 (bottom). 
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The impact of the discretization of T on the pressure field is visualized in Figs. 3 and 4 for 𝜕𝜕 = 0.6 s. Fig. 3 shows 
contours of the pressure field on an 𝑥𝑥𝑥𝑥 plane across the bubble. Immediately, one observes the pressure spike across the 
interface occurring with the one-fluid formulation due to the ill-defined ∇u when calculating T. In contrast, approaches I, II 
and III eliminate the jump and recover a different pressure inside the bubble. As shown in Fig. 4a, the pressure spike goes 
well beyond the figure bounds, i.e., 𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚 ≈ 0.13 Pa, and a smaller pressure inside the bubble than the analytical solution is 
obtained. For reference, the contributions to the pressure jump Δ𝑝𝑝 = 𝑝𝑝𝐺𝐺 − 𝑝𝑝𝐿𝐿 at 𝜕𝜕 = 0.6 s are −𝜎𝜎𝜅𝜅 = 0.015599 Pa, 
−(�̇�𝑚′)2(𝜌𝜌𝐺𝐺−1 − 𝜌𝜌𝐿𝐿−1) = −0.002719 Pa and 4𝜇𝜇𝐿𝐿𝑈𝑈𝐿𝐿/𝑅𝑅 = 0.021606 Pa, with 𝑅𝑅 = 0.12821 m and �̇�𝑚′ = 0.027481 kg/(m2s). 
When comparing the phase-wise approaches, approach II also predicts a smaller pressure inside the bubble but approach I 
and III approximate the analytical solution. Note that approach I still presents some oscillation across ΩΓ while III behaves 
more consistently with a smoother jump distribution that converges to the analytical solution (see Fig. 4c). That is, III does 
seek to eliminate the numerical influence of T in ΩΓ to replace it with f𝜇𝜇. From Fig. 3, the smoother pressure distribution 
obtained with approach III, despite some evidence of spurious oscillations, is highlighted when compared to the sharpness 
of approaches I and II. In particular, II displays sporadic pressure spikes due to limits in the divergence-free extrapolation of 
u𝐺𝐺 and u𝐿𝐿 with a Poisson-type equation, e.g., localized convergence issues, that could also be linked to the deteriorating 
shape implied by the radius growth profile in Fig. 2b. 

Notably, approach I may reach a similar effect as III due to the combination of the specific numerical discretization 
(central differencing) and problem configuration (static bubble). Specifically, it approximates u𝐺𝐺 ≈ 0, resulting in ∇2u𝐺𝐺 ≈
0, and obtains ∇2u𝐿𝐿 from a finite difference scheme that differentiates between two velocity gradients across the interface 
where one is nearly zero due to the constant velocity extrapolation and the other approximates the correct phase-wise 
gradient, resulting in a pressure jump similar to that introduced by f𝜇𝜇. Similarly, the particular configuration results in 
approach II almost cancelling the influence of T across ΩΓ (thus the reduced pressure jump) and the addition of f𝜇𝜇 could 
yield a similar result as approach III. That is, by realizing that II may be providing u𝐺𝐺 ≈ 0 and u𝐿𝐿 approximately linear along 
nΓ, so ∇2u𝐺𝐺 ≈ 0 and ∇2u𝐿𝐿 ≈ 0 along the normal direction. Regardless, the consistency of approach III is preferred. 

   

 

(a) Pressure field with mesh V3 (b) Radial velocity with mesh V3 (c) Pressure field with approach III  
    

Fig. 4: Radial profiles of pressure and velocity of the static vaporizing bubble extracted along the 𝑧𝑧 direction at 𝜕𝜕 = 0.6 s. (a) 
pressure obtained with mesh V3 and different modelling approaches for the viscous term; (b) velocity obtained with mesh V3 and 

different modelling approaches for the viscous term; (c) mesh convergence of the pressure with approach III. 
 
Lastly, Fig. 4b plots the radial velocity distribution at 𝜕𝜕 = 0.6 s. While all methods perform well in reproducing the 

analytical solution in the liquid phase, some non-zero velocity is observed in the vapor due to the presence of spurious 
currents in the VOF framework. The standard one-fluid discretization behaves the worst, while approach III mitigates the 
issue. However, approaches I and II provide a more consistent velocity inside the bubble despite the drawbacks in correcting 
the momentum balance and providing a consistent pressure field. Note that the presence of spurious currents is not seen to 
harm the long-term agreement with Scriven’s analytical solution [9]. 

 
4. Conclusion 

This paper has extended a momentum-consistent one-fluid formulation for low-viscosity evaporating flows recently 
developed using a non-conservative momentum formulation together with a sharp geometric VOF [9] to flows with high 
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viscosity. Regardless of the conservative or non-conservative formulation, the discretization of the viscous term in the one-
fluid context can introduce momentum imbalances that result in a non-physical pressure jump across the interface. Although 
its impact in static configurations is limited, such imbalances may be detrimental in more dynamic setups, e.g., instability 
timescales in boiling simulations. That is, the evolution of the liquid-gas interface strongly depends on the pressure jump 
across it. Within the context of the CSF model, three different approaches have been tested to discretize the viscous term in 
a phase-wise manner. A methodology based on the constant extrapolation normal to the interface of the velocity gradient 
and the addition of a body force to replicate the momentum jump induced by the viscous stresses is shown to provide a 
consistent numerical behaviour and recovers the exact pressure jump. Closely related to the GFM, such approach aims at the 
cancellation of the influence of the viscous term in the interfacial region and replaces it by a body force that generates a 
controlled pressure jump across the interface. 
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