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Abstract - In this paper, we propose a hierarchical and multi-feature appearance model for object tracking. An 

object is represented by a hierarchical tree model where the nodes represent object parts. An appearance template is 

designed for each part and described by a multi-feature set that combines multiple observations, such as colour, 

intensity, texture and edge. The hierarchical model is represented by a three-level spatial pyramid to characterize the 

target respectively in high-level, mid-level and low-level representations. We demonstrate the multi-level multi-

feature template model (MMTM) for object tracking in a generative learning formulation. In this formulation, the 

weights of different features in each template and the contribution of different templates are learnt to distinguish the 

object and background. The proposed model is tested on a variety of benchmarks involving object deformation, 

background cluttering and motion blur. The experimental results demonstrate that our approach can achieve superior 

performance than previous tracking methods.  
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1. Introduction 
Object tracking is an important research topic in computer vision, with wide applications in video 

surveillance, human-computer interface, medical imaging and so on (Wu, et al., 2013). Due to the 

dynamic tracking circumstance in various visual applications, tracking algorithm is required to deal with 

practical challenges such as illumination change, background cluttering, motion blur, non-rigid object 

deformation and object pose variation. Therefore, substantial trackers (Zhong, et al., 2012; Yoon et al., 

2012) have been proposed to improve tracking accuracy and robustness, which are generally composed of 

four modules: object initialization, appearance modelling, motion estimation and object localization (Li et 

al., 2013). In this paper we mainly focus on the appearance modelling since it is significant and effective 

in improving tracking performance. 

There exist wide varieties of appearance models with different visual representations and/or statistical 

modelling techniques. Literature (Li et al., 2013) summarizes that high-level representation (Hare et al., 

2011) is simple, computational efficient but susceptible to global appearance changes, while low-level 

template representation is effective but may be over-flexible and cause too many detection hypotheses in 

cluttered image (Lin et al., 2007). Inspired by the demonstration that “deep structure” giving richer 

descriptions of shape and appearance (Zhu et al., 2010), we argue that high-level, mid-level and low-level 

representations all contain important discriminative information. Therefore, we utilize all the templates 

generated from three levels to represent a target object. In addition to using template representations for 

object tracking, many researchers focus on exploiting multiple features (Yoon et al., 2012). Current 

approaches usually combine different features by discriminative feature selection, and use only one 

feature to represent a patch in the template (X. Liu et al., 2011) or to describe a tracker in the tracker set 

(Kwon et al., 2010). In this paper, we represent each patch or template by multiple features since all of 

them may contribute to distinguish the target from the background. Furthermore, the contribution of each 

feature and each template should be measured as according to their discriminative power changes under 

different circumstances. Therefore, inspired by information projection (Si & Zhu, 2012), we formulate 

multi-level multi-feature templates for object tracking as a generative learning problem, that is to learn an 
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underlying probability model for the tracked object by maximizing the difference between it and the 

probability distribution of background images. This formulation is different from previous visual tracking 

approaches such as Bayesian framework (Yoon, et al., 2012), sparse coding (Jia, et al., 2012), and sparse 

principle component analysis (Kwon et al., 2010).  

 

 

 
 

Fig.1 The method overview. 

 

Our contributions are mainly summarized in two aspects: 1) we propose a multi-level multi-feature 

appearance templates to describe the tracked object. The proposed model is represented by a pyramid 

structure which encodes high-level, middle level and low level information of the object and contributes to 

increase tracking accuracy. Besides, the multiple feature representation enables the model to utilize all the 

visual information for each template, which improves tracking robustness in dynamic conditions. 2) We 

exploit a generative learning formulation to learn the parameters of the proposed model, i.e. the template 

weights and feature weights.  

 

2. Proposed Method 
The goal of visual tracking is to determine the object position in each frame of video sequence. In this 

paper, we achieve this goal by finding out the location with highest score in the candidate location set, 

which is generated from the surroundings of the last observed object position. As shown in Fig.1, we 

represent each candidate bounding box with a three level spatial pyramid which is a quad-tree like 

representation. A template is designed for each node. Templates in three scales describe the high-level, 

mid-level and low-level information respectively. Totally   features in histogram representations 

(  
        

 ) are extracted for i
th
 template    to combine different appearance cues including colour, 
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texture, edge and intensity. We formulate the multi-level multi-feature templates for object tracking as a 

generative learning problem based on the information projection principle (Si & Zhu, 2012). In this 

formulation, two probability models for positive and negative samples are parameterized by multiple 

templates and multiple features. The parameters are learnt by maximizing information gain to boost 

discrimination, i.e. the feature prototypes (   
        

 ), feature weights    and template weight   . In 

the testing phrase, we first calculate the feature responses (  
        

 )  by comparing the extracted 

features with the feature prototypes on   . The score of each template (i.e.    ) is computed with the learnt 

parameters (  
       

 ) and   . The score of each location is obtained by summing all the template 

scores (            ). 
 

3. The Multi-scale Multi-feature Templates 

3. 1. The Multi-scale Templates and Object Representation 
In this paper, a hierarchical tree-structure model for object tracking is proposed to cover the object 

configuration information in different level. Specifically, a three level quad-tree is designed for the object 

representation. As shown in Fig.1, the root node in the first level describes the high-level information of 

the entire object. In the second level, 4 child nodes segment the object to 2×2 grid and each of them 

represents one part of the object, which describe the mid-level information. Similarly, there are 16 nodes 

in a 4 by 4 grid layout in the third level, which represent the low-level information. Thus, there are totally 

21 nodes to represent the target in different levels and locations. Each node in the tree is described by a 

template. We formulate the template set B to represent the object by assembling all templates: 

 

 1 2 21, ,..., .B T T T   (1) 

 

It is noted that this hierarchical model will degenerate to the high-level representation by only using 

the first level, which may ignore local information. And if we merely use the third level in this model, it 

will become a low-level template representation, which may be hard to capture global information. 

Generally speaking, the deeper hierarchical model may encode more information. However, it also 

requires extra computational cost. Thus, a three level hierarchical model is adopted in this work as a trade-

off between effectiveness and efficiency.  

 

3. 2. Multi-Feature Appearance Model for a Template 
In addition to the spatial pyramid, which specifies multi-level spatial configuration information, we 

construct an appearance model for each template in the template set. For a template   , its appearance 

model    is represented by two terms as: 

 

 ,  ,i i i  PH w   (2) 

 1; ... ; ,K

i i iPH PH PH   (3) 

 1; ...; ,K

i i iw ww   (4) 

 
where vector      denotes the prototype set containing K feature prototypes of this template, and vector 

   denotes the weights of each feature in computing the template response. Specifically, the feature 

prototype corresponds to a certain typical parametric appearance pattern (e.g., texture, colour, etc.) of each 

template in our model. In general, we can use any off-the-shelf visual features for a template, e.g. HOG 

(Dalal & Triggs, 2005), colour histogram, local binary pattern (LBP) (Ojala, et al., 2002) and intensity.  

In this paper, since all the features are represented in histogram format, we compute a scalar-valued 

feature response   
  (   {     }) of an incoming feature vector   

  to the pro-type    
  by measuring 
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histogram correlation between them:   
   (  

     
 ), which is shown as Eq.(5)

1
,  
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where   ( ) and J refer to the value of j
th
 bin and the dimension of    respectively, while    is the mean 

value of the histograms. As we use multiple features to represent a single template, the feature response 

    of whole template     is the weighted sum of all the individual feature responses    (  
       

 ): 
 

1

1

. .   0, 1 ,

K
k k T

i i i i i

k

K
k k

i i

k

R w r

s t w w





 

 





w r

  (6) 

 

where    (  
       

 ) is the weights of feature responses for    , and all the weights in this vector sum 

to one while the value of them is non-negative. 

 

3. 3. Generative Learning for Template Parameter 
To build an adaptive and informative appearance model for tracking the object in the dynamic and 

cluttered background, we adopt a generative learning algorithm to determine the parameters for the 

templates and their feature weights, which is generalized from the information projection principle (Si & 

Zhu, 2012). Let    {  
    

      
 }  denotes the positive samples, which are composed of multiple 

tracking results from previous frames to alleviate over-fitting of the learned model, and    
{  
    

      
 } indicates the negative samples, consisting of the training images obtained from the object 

surroundings in previous frame. Let  ( ) be the underlying probability distribution for the tracking target, 

and  ( ) be the reference (background) distribution, where    is sampled from  ( ) and     sampled 

from   ( ) . Our objective is to learn a probability model  (      )  that approach  ( )  starting 

from  ( ). To simplify notation in the following discussion, we denote the template response of     on    

and    by {  
     
 }

   

 
 and  {  

     
 }

   

 
, respectively. 

 For the MMTM of the target object, the model space  (    )  is defined as:  (    )  

{ (      )|  [  ]    [  ]   } , where   [  ]    [  ]  implies the constraint that the model 

expectation of each template response from the positives samples is expected to match the empirical 

statistics. Based on the max entropy principle that  ̂            (   )  ( ‖ ),  a factorized log-

linear model (Si & Zhu, 2012) is derived as in Eq. (7) because there is no overlapping of templates in each 

pyramid level: 

 

     
1

1
ˆ ; exp  ,

TI

i i

i i

p I MMTM q I R
z




 
  

 
   (7) 

 

where    and    denote the parameters of template weight and normalizing factor for     in MMTM, 

                                                 
1
 This equation is defined in http://www.opencv.org.cn/opencvdoc/2.3.2/html.   

http://www.opencv.org.cn/opencvdoc/2.3.2/html
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respectively, and     (equals to 21) refers to the number of templates in the model. 

We formulate the learning objective as a regularized information gain of MMTM similar to (Si & Zhu, 

2012), shown as Eq. (8): 

 

2

1

1

ˆ( ) ( || ) ( || ) ( )

1 1
log  

2 2

                   . . 0,  1

TI
T T

i f i i i i i i

i

K
k k

i i

k

IG MMTM KL f q KL f p M MMTM

E z

s t w w

  




  

 
      

 

 





w r w w  (8) 

 

where [  ( ‖ )    ( ‖ ̂)]  is the difference of Kullback-Leibler divergence of the learned model 

 ̂(      ) approaching  ( ) relative to  ( ), which measures information-theoretical improvement. 

 (    ) accounts for the regularization term on model complexity, in which α and β denote the trade-

off parameters on shrinking the weight    and punishing extreme heterogeneity of    , respectively. Thus, 

the optimal object appearance model is learned by maximizing each template’s information gain    .  
Similar to (Si & Zhu, 2012), we calculate the feature prototype of each    by the average of feature 

histograms extracted from all the positive samples on the same template. Then, for each template, as there 

are two parameters to calculate:    and   , and neither of them has analytic solution, we gain the optimal 

values by alternating optimization, during which we need to get the solution of    with a fixed   , as well 

as the solution of    with a fixed   .  

For optimizing    with    fixed, the optimal value (  
    

 ) is obtained by solving  
   

   
   as Eq. (9) 

 

 * *

ˆ, :  ,T T

i i f i i p i i iz E E        w r w r   (9) 

 

where   [  
   ]  

 

 
∑   

     
  

    is empirical expectation by the mean template response on positive 

samples. The term of   ̂[  
   ] is approximately estimated using the response on   :    ̂[  

   ]  

  [
 

  
   (    

   )  
   ]  

 

 
∑ [

 

  
   (    

     
 )  

     
 ] 

   , where    
 

 
∑    (    

     
 ) 

   . 

On computation, we can solve Eq.(9) by Newton method (Si & Zhu, 2012). 

For optimizing   with a fixed   , we select two elements in    to be updated in each iteration while 

the others are fixed. The optimal value is obtained by iteratively traversing over all pairs of elements in    
and we adopt the gradient projection method to optimize these two elements until the objective in Eq. (8) 

does not increase.  

In the testing phrase, we exploit these parameters to compute the location score    of a certain 

candidate area    , as   (  )  ∑ (    
            )

  
   , where    ,   , and    are acquired in the 

generative learning progress, and       is the feature response of i
th
 template in    . The target is located 

by the candidate area with highest score. 

 

4. Experimental Results 

4. 1. Implementation Details  
In our method, we use multiple features to represent the appearance model for each template 

including the histogram on the colour plane (RGB and YUV), original intensity, LBP and HOG. We 

empirically set the value of regularization terms α and β in Eq. (8) to be 3.0 and 0.1 respectively. The 

positive sample set is updated similar to the template set updating method in ASLA (Jia, et al., 2012); the 

negative samples are collected only in the latest frame. The search region is defined by enlarging the last 

detected bounding box by one and a half of the object size in each direction. 
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4. 2. Quantitative Results 
We evaluate our proposed method on the latest video benchmark (Wu, et al., 2013), where each video 

sequence contains one or multiple challenges. We also compare our method with five different trackers 

estimated in the benchmark: SCM (Zhong, et al., 2012), ASLA (Jia, et al., 2012), MTT (Zhang, et al., 

2012), Struck (Hare, et al., 2011) and LSK (B. Liu, et al., 2011).  The evaluation metric we use is the same 

as introduced in the benchmark (Wu, et al., 2013): the overlap ratio of bounding boxes. Specifically, the 

score of the ground-truth bounding box    and the tracked bounding box    is defined as   
|     |

|     |
, 

where   and   denote the intersection and union regions of the them, and | | stands for the number of 

pixels in the region.  The measurement of performance on a sequence of frames is given by the number of 

successfully tracked frames whose overlap   is greater than a certain threshold. The ratio of successful 

frames at different thresholds varied from 0 to 1 is given by the success plot. We compare our method 

with the state-of-arts on the overall dataset and the non-rigid object deformations (DEF), motion blur 

(MB), background cluttering (BC), out-of-plane rotation (OPR) and fast motion (FM) sub-datasets, which 

are labelled by the benchmark. The plots are shown in Fig.2. 

 

 

  

 
 

Fig.2 Comparison of success plots on our method (i.e., MMTM) and previous trackers. Each panel from left to right 

and up to bottom corresponds to the results on overall dataset and DEF, MB, BC, OPR, FM sub-datasets. 

 
Table. 1. Results on the dataset and its sub-datasets.  

 

 MTT LSK ASLA Struck SCM Ours 

Overall 0.376 0.395 0.434 0.474 0.499 0.506 

DEF 0.280 0.377 0.372 0.393 0.448 0.546 

MB 0.274 0.302 0.258 0.433 0.298 0.502 

BC 0.337 0.388 0.408 0.458 0.450 0.480 

OPR 0.362 0.400 0.422 0.432 0.470 0.488 

FM 0.333 0.328 0.247 0.462 0.296 0.479 



 

60-7 

To avoid the unfairness caused by using one success rate at a certain threshold for evaluating all 

trackers, the benchmark (Wu, et al., 2013) uses the area under curve (AUC) of each plot to represent the 

performance of a tracker on the dataset. The AUC scores of our tracker and the reference trackers are 

reported in Table. 1. It is clear that our method outperforms previous trackers on the whole dataset and its 

sub-datasets. These sub-datasets are selected due to their commonness in real-world tracking problem and 

they correspond to different challenges in visual object tracking. 

 

4. 3. Qualitative Results and Analysis 
Deformation: As shown in Fig.3 (a) and (b), both tracking progresses encounter object non-rigid 

deformation, where many other trackers fail in tracking the target. The possible reason for our method 

performs well during these situations is that it employs the appearance information in multiple levels. The 

high-level template defines the object silhouette, while the middle-level and low-level templates match the 

discriminative parts, and combing them can detect the target precisely. 

Motion Blur and Fast Motion: Generally, motion blur accompanies with fast motion, as illustrated in 

Fig.3 (b) and (d). Due to the complementary characteristic of multiple feature representation for each 

template, the proposed method is likely to have enough distinctive power for tracking when the target is 

blurred, while other methods might endure drift problem. 

Background cluttering: Shown in Fig.3 (c), the background includes many cluttering objects with 

similar appearance to the tracking target. While other methods use the motion estimation to eliminate 

these disturbing candidates, our appearance model is robust enough to track the object accurately with 

distinguishing information gathered from the generative learning against these negative samples. 

 

 

      
(a) Singer2 (DEF, OPR, BC) 

     
(b) Tiger1 (DEF, FM, MB, OPR) 

     
(c) Football1 (OPR, BC) 

      

(d) Lemming (FM, OPR) 

 
 

Fig. 3. Tracking results of different algorithms (best viewed in colour). 

MMTM ALSA LSK MTT SCM Struck  
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Out-of-plane rotation: As shown in Fig.3 (b) and (d), our method overcomes the object OPR 

challenge while other methods encounter result drift or even target lose. This is possibly achieved by the 

persistence of distinctive information due to the multi-level multi-feature appearance model, and the 

tolerance of rotation benefits from the learning progress in each frame. 

 

4. Conclusion 
In this paper, we propose a novel multi-level multi-feature template based appearance model for 

object tracking. A tracked object is represented by combining the templates in different levels. For each 

template in the model, we characterize it by using multiple features simultaneously to exploit their 

complementary characteristics. Furthermore, we demonstrate a generative learning formulation to learn 

the parameters of each template and different features. The proposed method is able to consider both the 

changes of tracking object and its background, and thus tracks the object accurately and robustly. The 

experimental results demonstrate that the proposed tracker is robust to various challenges and outperforms 

previous tracking methods. 
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